Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cytotherapy ; 26(4): 340-350, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38349309

RESUMO

BACKGROUND AIMS: Age-related macular degeneration (AMD) is the most common cause of blindness in elderly patients within developed countries, affecting more than 190 million worldwide. In AMD, the retinal pigment epithelial (RPE) cell layer progressively degenerates, resulting in subsequent loss of photoreceptors and ultimately vision. There is currently no cure for AMD, but therapeutic strategies targeting the complement system are being developed to slow the progression of the disease. METHODS: Replacement therapy with pluripotent stem cell-derived (hPSC) RPEs is an alternative treatment strategy. A cell therapy product must be produced in accordance with Good Manufacturing Practices at a sufficient scale to facilitate extensive pre-clinical and clinical testing. Cryopreservation of the final cell product is therefore highly beneficial, as the manufacturing, pre-clinical and clinical testing can be separated in time and location. RESULTS: We found that mature hPSC-RPE cells do not survive conventional cryopreservation techniques. However, replating the cells 2-5 days before cryopreservation facilitates freezing. The replated and cryopreserved hPSC-RPE cells maintained their identity, purity and functionality as characteristic RPEs, shown by cobblestone morphology, pigmentation, transcriptional profile, RPE markers, transepithelial resistance and pigment epithelium-derived factor secretion. Finally, we showed that the optimal replating time window can be tracked noninvasively by following the change in cobblestone morphology. CONCLUSIONS: The possibility of cryopreserving the hPSC-RPE product has been instrumental in our efforts in manufacturing and performing pre-clinical testing with the aim for clinical translation.


Assuntos
Degeneração Macular , Células-Tronco Pluripotentes , Humanos , Idoso , Diferenciação Celular , Degeneração Macular/terapia , Criopreservação , Células Epiteliais , Pigmentos da Retina
2.
Nat Cell Biol ; 24(6): 845-857, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35637409

RESUMO

The first lineage choice in human embryo development separates trophectoderm from the inner cell mass. Naïve human embryonic stem cells are derived from the inner cell mass and offer possibilities to explore how lineage integrity is maintained. Here, we discover that polycomb repressive complex 2 (PRC2) maintains naïve pluripotency and restricts differentiation to trophectoderm and mesoderm lineages. Through quantitative epigenome profiling, we found that a broad gain of histone H3 lysine 27 trimethylation (H3K27me3) is a distinct feature of naïve pluripotency. We define shared and naïve-specific bivalent promoters featuring PRC2-mediated H3K27me3 concomitant with H3K4me3. Naïve bivalency maintains key trophectoderm and mesoderm transcription factors in a transcriptionally poised state. Inhibition of PRC2 forces naïve human embryonic stem cells into an 'activated' state, characterized by co-expression of pluripotency and lineage-specific transcription factors, followed by differentiation into either trophectoderm or mesoderm lineages. In summary, PRC2-mediated repression provides a highly adaptive mechanism to restrict lineage potential during early human development.


Assuntos
Células-Tronco Embrionárias Humanas , Complexo Repressor Polycomb 2 , Diferenciação Celular/genética , Desenvolvimento Embrionário , Histonas/genética , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
3.
Stem Cell Reports ; 17(6): 1458-1475, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705015

RESUMO

Human embryonic stem cell-derived retinal pigment epithelial cells (hESC-RPE) are a promising cell source to treat age-related macular degeneration (AMD). Despite several ongoing clinical studies, a detailed mapping of transient cellular states during in vitro differentiation has not been performed. Here, we conduct single-cell transcriptomic profiling of an hESC-RPE differentiation protocol that has been developed for clinical use. Differentiation progressed through a culture diversification recapitulating early embryonic development, whereby cells rapidly acquired a rostral embryo patterning signature before converging toward the RPE lineage. At intermediate steps, we identified and examined the potency of an NCAM1+ retinal progenitor population and showed the ability of the protocol to suppress non-RPE fates. We demonstrated that the method produces a pure RPE pool capable of maturing further after subretinal transplantation in a large-eyed animal model. Our evaluation of hESC-RPE differentiation supports the development of safe and efficient pluripotent stem cell-based therapies for AMD.


Assuntos
Células-Tronco Embrionárias Humanas , Degeneração Macular , Animais , Diferenciação Celular/genética , Humanos , Degeneração Macular/genética , Degeneração Macular/terapia , Epitélio Pigmentado da Retina , Pigmentos da Retina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA