Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 160(13)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38568947

RESUMO

Structural and vibrational properties of aqueous solutions of alkali hydroxides (LiOH, NaOH, and KOH) are computed using quantum molecular dynamics simulations for solute concentrations ranging between 1 and 10M. Element-resolved partial radial distribution functions, neutron and x-ray structure factors, and angular distribution functions are computed for the three hydroxide solutions as a function of concentration. The vibrational spectra and frequency-dependent conductivity are computed from the Fourier transforms of velocity autocorrelation and current autocorrelation functions. Our results for the structure are validated with the available neutron data for 17M concentration of NaOH in water [Semrouni et al., Phys. Chem. Chem. Phys. 21, 6828 (2019)]. We found that the larger ionic radius [rLi+

2.
Small ; 19(29): e2300098, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026674

RESUMO

Ultrathin MoS2 has shown remarkable characteristics at the atomic scale with an immutable disorder to weak external stimuli. Ion beam modification unlocks the potential to selectively tune the size, concentration, and morphology of defects produced at the site of impact in 2D materials. Combining experiments, first-principles calculations, atomistic simulations, and transfer learning, it is shown that irradiation-induced defects can induce a rotation-dependent moiré pattern in vertically stacked homobilayers of MoS2 by deforming the atomically thin material and exciting surface acoustic waves (SAWs). Additionally, the direct correlation between stress and lattice disorder by probing the intrinsic defects and atomic environments are demonstrated. The method introduced in this paper sheds light on how engineering defects in the lattice can be used to tailor the angular mismatch in van der Waals (vdW) solids.

3.
Phys Rev Lett ; 126(21): 216403, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34114857

RESUMO

The static dielectric constant ϵ_{0} and its temperature dependence for liquid water is investigated using neural network quantum molecular dynamics (NNQMD). We compute the exact dielectric constant in canonical ensemble from NNQMD trajectories using fluctuations in macroscopic polarization computed from maximally localized Wannier functions (MLWF). Two deep neural networks are constructed. The first, NNQMD, is trained on QMD configurations for liquid water under a variety of temperature and density conditions to learn potential energy surface and forces and then perform molecular dynamics simulations. The second network, NNMLWF, is trained to predict locations of MLWF of individual molecules using the atomic configurations from NNQMD. Training data for both the neural networks is produced using a highly accurate quantum-mechanical method, DFT-SCAN that yields an excellent description of liquid water. We produce 280×10^{6} configurations of water at 7 temperatures using NNQMD and predict MLWF centers using NNMLWF to compute the polarization fluctuations. The length of trajectories needed for a converged value of the dielectric constant at 0°C is found to be 20 ns (40×10^{6} configurations with 0.5 fs time step). The computed dielectric constants for 0, 15, 30, 45, 60, 75, and 90°C are in good agreement with experiments. Our scalable scheme to compute dielectric constants with quantum accuracy is also applicable to other polar molecular liquids.

4.
J Phys Chem Lett ; 14(7): 1732-1739, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36757778

RESUMO

Effects of lateral compression on out-of-plane deformation of two-dimensional MoSe2 layers are investigated. A MoSe2 monolayer develops periodic wrinkles under uniaxial compression and Miura-Ori patterns under biaxial compression. When a flat MoSe2 monolayer is placed on top of a wrinkled MoSe2 layer, the van der Waals (vdW) interaction transforms wrinkles into ridges and generates mixed 2H and 1T phases and chain-like defects. Under a biaxial strain, the vdW interaction induces regions of Miura-Ori patterns in bilayers. Strained systems analyzed using a convolutional neural network show that the compressed system consists of semiconducting 2H and metallic 1T phases. The energetics, mechanical response, defect structure, and dynamics are analyzed as bilayers undergo wrinkle-ridge transformations under uniaxial compression and moiré transformations under biaxial compression. Our results indicate that in-plane compression can induce self-assembly of out-of-plane metasurfaces with controllable semiconducting and metallic phases and moiré patterns with unique optoelectronic properties.

5.
J Phys Chem Lett ; 13(30): 7051-7057, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35900140

RESUMO

The nature of hydrogen bonding in condensed ammonia phases, liquid and crystalline ammonia has been a topic of much investigation. Here, we use quantum molecular dynamics simulations to investigate hydrogen bond structure and lifetimes in two ammonia phases: liquid ammonia and crystalline ammonia-I. Unlike liquid water, which has two covalently bonded hydrogen and two hydrogen bonds per oxygen atom, each nitrogen atom in liquid ammonia is found to have only one hydrogen bond at 2.24 Å. The computed lifetime of the hydrogen bond is t ≅ 0.1 ps. In contrast to crystalline water-ice, we find that hydrogen bonding is practically nonexistent in crystalline ammonia-I.

6.
Sci Rep ; 11(1): 1656, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462269

RESUMO

Engineering thermal transport in two dimensional materials, alloys and heterostructures is critical for the design of next-generation flexible optoelectronic and energy harvesting devices. Direct experimental characterization of lattice thermal conductivity in these ultra-thin systems is challenging and the impact of dopant atoms and hetero-phase interfaces, introduced unintentionally during synthesis or as part of deliberate material design, on thermal transport properties is not understood. Here, we use non-equilibrium molecular dynamics simulations to calculate lattice thermal conductivity of [Formula: see text] monolayer crystals including [Formula: see text] alloys with substitutional point defects, periodic [Formula: see text] heterostructures with characteristic length scales and scale-free fractal [Formula: see text] heterostructures. Each of these features has a distinct effect on phonon propagation in the crystal, which can be used to design fractal and periodic alloy structures with highly tunable thermal conductivities. This control over lattice thermal conductivity will enable applications ranging from thermal barriers to thermoelectrics.

7.
J Phys Chem Lett ; 12(25): 6020-6028, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34165308

RESUMO

A remarkable property of certain covalent glasses and their melts is intermediate range order, manifested as the first sharp diffraction peak (FSDP) in neutron-scattering experiments, as was exhaustively investigated by Price, Saboungi, and collaborators. Atomistic simulations thus far have relied on either quantum molecular dynamics (QMD), with systems too small to resolve FSDP, or classical molecular dynamics, without quantum-mechanical accuracy. We investigate prototypical FSDP in GeSe2 glass and melt using neural-network quantum molecular dynamics (NNQMD) based on machine learning, which allows large simulation sizes with validated quantum mechanical accuracy to make quantitative comparisons with neutron data. The system-size dependence of the FSDP height is determined by comparing QMD and NNQMD simulations with experimental data. Partial pair distribution functions, bond-angle distributions, partial and neutron structure factors, and ring-size distributions are presented. Calculated FSDP heights agree quantitatively with neutron scattering data for GeSe2 glass at 10 K and melt at 1100 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA