Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 8(3): e1002628, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479210

RESUMO

The genetic basis of floral symmetry is a topic of great interest because of its effect on pollinator behavior and, consequently, plant diversification. The Asteraceae, which is the largest family of flowering plants, is an ideal system in which to study this trait, as many species within the family exhibit a compound inflorescence containing both bilaterally symmetric (i.e., zygomorphic) and radially symmetric (i.e., actinomorphic) florets. In sunflower and related species, the inflorescence is composed of a single whorl of ray florets surrounding multiple whorls of disc florets. We show that in double-flowered (dbl) sunflower mutants (in which disc florets develop bilateral symmetry), such as those captured by Vincent van Gogh in his famous nineteenth-century sunflower paintings, an insertion into the promoter region of a CYCLOIDEA (CYC)-like gene (HaCYC2c) that is normally expressed specifically in WT rays is instead expressed throughout the inflorescence, presumably resulting in the observed loss of actinomorphy. This same gene is mutated in two independent tubular-rayed (tub) mutants, though these mutations involve apparently recent transposon insertions, resulting in little or no expression and radialization of the normally zygomorphic ray florets. Interestingly, a phylogenetic analysis of CYC-like genes from across the family suggests that different paralogs of this fascinating gene family have been independently recruited to specify zygomorphy in different species within the Asteraceae.


Assuntos
Flores , Helianthus , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Asteraceae , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/genética , Evolução Molecular , Flores/anatomia & histologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Helianthus/anatomia & histologia , Helianthus/genética , Dados de Sequência Molecular , Morfogênese/genética , Mutagênese Insercional/genética , Fenótipo , Filogenia , Fatores de Transcrição/genética
2.
J Hered ; 104(6): 853-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24078678

RESUMO

The formation of hybrids among closely related species has been observed in numerous plant taxa. Selection by pollinators on floral traits can act as an early reproductive isolating barrier and may be especially important when there is overlap in distribution and flowering time. In this study, we use Quantitative Trait Locus (QTL) mapping based on 293 codominant SNP markers in an F2 population (n = 328) to assess the size, magnitude, and location of the genetic regions controlling floral traits known to be important for pollinator attraction in 2 species of Lousiana Irises, Iris fulva and Iris hexagona. We also evaluate correlations among F2 traits and identify transgression in the hybrid population. Overall, we observe that differences in most floral traits between I. fulva and I. hexagona are controlled by multiple QTLs and are distributed across several linkage groups. We also find evidence of transgression at several QTL, suggesting that hybridization can contribute to generating phenotypic variation, which may be adaptive in rapidly changing environments.


Assuntos
Flores , Gênero Iris/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Mapeamento Cromossômico , Cruzamentos Genéticos , Ligação Genética , Genética Populacional , Hibridização Genética , Escore Lod , Fenótipo
3.
Genetics ; 197(3): 969-79, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24770331

RESUMO

Knowledge of the nature and extent of karyotypic differences between species provides insight into the evolutionary history of the genomes in question and, in the case of closely related species, the potential for genetic exchange between taxa. We constructed high-density genetic maps of the silverleaf sunflower (Helianthus argophyllus) and Algodones Dune sunflower (H. niveus ssp. tephrodes) genomes and compared them to a consensus map of cultivated sunflower (H. annuus) to identify chromosomal rearrangements between species. The genetic maps of H. argophyllus and H. niveus ssp. tephrodes included 17 linkage groups each and spanned 1337 and 1478 cM, respectively. Comparative analyses revealed greater divergence between H. annuus and H. niveus ssp. tephrodes (13 inverted segments, 18 translocated segments) than between H. annuus and H. argophyllus (10 inverted segments, 8 translocated segments), consistent with their known phylogenetic relationships. Marker order was conserved across much of the genome, with 83 and 64% of the H. argophyllus and H. niveus ssp. tephrodes genomes, respectively, being syntenic with H. annuus. Population genomic analyses between H. annuus and H. argophyllus, which are sympatric across a portion of the natural range of H. annuus, revealed significantly elevated genetic structure in rearranged portions of the genome, indicating that such rearrangements are associated with restricted gene flow between these two species.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Helianthus/genética , Endogamia , Mapeamento Cromossômico , Ligação Genética , Variação Genética , Genética Populacional , Genoma de Planta , Sintenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA