Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 115(9): 1129-1150, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35852752

RESUMO

Understanding the effects of forest-to-agriculture conversion on microbial diversity has been a major goal in soil ecological studies. However, linking community assembly to the ruling ecological processes at local and regional scales remains challenging. Here, we evaluated bacterial community assembly patterns and the ecological processes governing niche specialization in a gradient of geography, seasonality, and land-use change, totaling 324 soil samples, 43 habitat characteristics (abiotic factors), and 16 metabolic and co-occurrence patterns (biotic factors), in the Brazilian Atlantic Rainforest, a subtropical biome recognized as one the world's largest and most threatened hotspots of biodiversity. Pairwise beta diversities were lower in pastures than in forest and no-till soils. Pasture communities showed a predominantly neutral model, regarding stochastic processes, with moderate dispersion, leading to biotic homogenization. Most no-till and forest microbial communities followed a niche-based model, with low rates of dispersal and weak homogenizing selection, indicating niche specialization or variable selection. Historical and evolutionary contingencies, as represented by soil type, season, and dispersal limitation were the main drivers of microbial assembly and processes at the local scale, markedly correlated with the occurrence of endemic microbes. Our results indicate that the patterns of assembly and their governing processes are dependent on the niche occupancy of the taxa evaluated (generalists or specialists). They are also more correlated with historical and evolutionary contingencies and the interactions among taxa (i.e., co-occurrence patterns) than the land-use change itself.


Assuntos
Microbiota , Microbiologia do Solo , Biodiversidade , Florestas , Solo
2.
Ecotoxicology ; 31(1): 64-74, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34674062

RESUMO

This study assessed the influence of three tropical soil types and soil moisture content on the toxicity and risk of the insecticide fipronil to collembolans Folsomia candida. Chronic toxicity tests were performed in a Tropical Artificial Soil (TAS), an Oxisol and an Entisol spiked with increasing concentrations of fipronil to assess the effects on the reproduction and growth of the species. The soil moisture contents were kept at 60% (standard condition) and 30 or 45% (water restriction) of their water holding capacity (WHC). The toxicity of fipronil on collembolans reproduction was about three times higher in Entisol compared to TAS or Oxisol. Higher toxicities were also found in the drier TAS (EC50 30%WHC = 0.20 vs EC50 60%WHC = 0.70 mg kg-1) and Oxisol (EC50 45%WHC = 0.27 vs EC50 60%WHC = 0.54 mg kg-1), while in Entisol lower impacts were found in the drier samples (EC50 30%WHC = 0.41 vs EC50 60%WHC = 0.24 mg kg-1). For all tested soils, the size of generated collembolans was reduced by the fipronil concentrations, regardless of soil moisture. However, the drier condition increased the effect on the growth in TAS and Entisol for some concentrations. A significant risk of exposure was found in TAS and Oxisol at drier conditions and, for Entisol, regardless of the soil moisture. The toxic effects and risk of fipronil on collembolans were higher in the natural sandy soil. The soil moisture content increase or decrease the toxicity of the insecticide for collembolans, depending on soil type.


Assuntos
Artrópodes , Poluentes do Solo , Animais , Pirazóis , Reprodução , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
3.
Microb Ecol ; 82(4): 942-960, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33656687

RESUMO

Information concerning arbuscular mycorrhizal (AM) fungal geographical distribution in tropical and subtropical soils from the Atlantic Forest (a global hotspot of biodiversity) are scarce and often restricted to the evaluation of richness and abundance of AM fungal species at specific ecosystems or local landscapes. In this study, we hypothesized that AM fungal diversity and community composition in subtropical soils would display fundamental differences in their geographical patterns, shaped by spatial distance and land-use change, at local and regional scales. AM fungal community composition was examined by spore-based taxonomic analysis, using soil trap cultures. Acaulospora koskei and Glomus were found as generalists, regardless of mesoregions and land uses. Other Acaulospora species were also found generalists within mesoregions. Land-use change and intensification did not influence AM fungal composition, partially rejecting our first hypothesis. We then calculated the distance-decay of similarities among pairs of AM fungal communities and the distance-decay relationship within and over mesoregions. We also performed the Mantel test and redundancy analysis to discriminate the main environmental drivers of AM fungal diversity and composition turnover. Overall, we found significant distance-decays for all land uses. We also observed a distance-decay relationship within the mesoregion scale (< 104 km) and these changes were correlated mainly to soil type (not land use), with the secondary influence of both total organic carbon and clay contents. AM fungal species distribution presented significant distance-decays, regardless of land uses, which was indicative of dispersal limitation, a stochastic neutral process. Although, we found evidence that, coupled with dispersal limitation, niche differentiation also played a role in structuring AM fungal communities, driven by long-term historical contingencies, as represented by soil type, resulting from different soil origin and mineralogy across mesoregions.


Assuntos
Micobioma , Micorrizas , Biodiversidade , Ecossistema , Florestas , Fungos , Micorrizas/genética , Solo , Microbiologia do Solo
4.
An Acad Bras Cienc ; 92(suppl 2): e20180758, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33146271

RESUMO

The production model used in Brazilian pig farms promotes a concentration of animals in small territorial extensions, causing difficulty in disposing of the manure generated, since the economically viable alternative is to use this as an agricultural fertilizer. The objective was to evaluate the effect of swine manure doses on the biological and behavioral parameters in Folsomia candida by ecotoxicological tests. An Ultisol, Oxisol and Tropical Artificial Soil (TAS) were contaminated with 0, 25, 50, 75 and 100 m3 ha-1 of swine manure, to which springtails were exposed for evaluation of mortality, and the doses 0, 10, 15, 20 and 25 m3 ha-1 of swine manure to evaluated reproduction and avoidance. Lethality was observed in all doses as well as all soils, indicating toxicity of the manure. In the reproduction tests dose since 10 m3 ha-1 caused a reduction of juveniles in all soils. Avoidance behavior was observed in all doses of the Oxisol treatments and at 20 and 25 m3 ha-1 in Ultisol treatments. However, in TAS occurred not avoidance response of F. candida. We conclude that the swine manure was toxic to F. candida and the toxicity is dependent on the soil characteristics and the manure concentrations applied.


Assuntos
Artrópodes , Poluentes do Solo , Animais , Brasil , Esterco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Suínos
5.
Ecotoxicol Environ Saf ; 168: 457-465, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30415168

RESUMO

Inadequate application of liquid pig manure (LPM) may pose risks to the soil due to the potential contaminants that exists, as well as by the large water input that can originate excessive moisture. By using Terrestrial Model Ecosystems, this study aimed to evaluate the effect of application of LPM (82% moisture) using the application rates of 20, 50 and 150 m3 ha-1 and also of the corresponding amount of water to understand the origin of effects on the soil fauna of two sub-tropical soils. In general, the results obtained for the two soil types indicated that LPM (150 m3 ha-1) changed the composition of soil fauna, with an increase in the abundance of insect larvae and dipterans, but a decrease in the number of earthworms and enchytraeids. Microbial biomass, soil respiration and the nutrients Mg, K and P increased with the amount of LPM supplied to the soil. When analysing the effects of adding large volumes of water via the LPM, results showed that application did not originate significant effects on the parameters measured. The differences obtained when comparing both treatments were mainly attributed to the organic load brought by the LPM and not to the amount of water without LPM.


Assuntos
Fertilizantes/toxicidade , Esterco , Microbiologia do Solo , Poluentes do Solo/toxicidade , Solo/química , Animais , Biomassa , Fenômenos Químicos , Insetos/efeitos dos fármacos , Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Oligoquetos/efeitos dos fármacos , Suínos , Água/análise
6.
Ecotoxicol Environ Saf ; 169: 207-215, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30448703

RESUMO

Mancozeb is a fungicide widely used in agriculture, mostly against the pathogen Glomerella cingulata responsible for the rot of ripe grape, but presents high toxicity. Strategies are sought to reduce the toxicity of this fungicide and alternative treatments are welcome. An alternative could be the use of clove oil, which has Eugenol as its major compound, and has antifungal potential against G. cingulata, however, Eugenol is susceptible to degradation processes which may compromise its efficacy. The nanoencapsulation of Mancozeb and Eugenol is a possible strategy to overcome the limitations of toxicity, solubility and instability of these compounds. Therefore, the objective of this study is to develop nanoemulsions containing Mancozeb (0.1 mg/mL) and Eugenol (33 mg/mL), isolated or associated, and evaluate the safety of these formulations through cytotoxicity, genotoxicity and ecotoxicity tests. Nanoemulsions were developed by the spontaneous emulsification method, cytotoxicity and genotoxicity were evaluated in healthy human cells through MTT, Dichlorofluorescein diacetate and Picogreen tests, and ecotoxicity assessment was carried out using the chronic toxicity test in springtails. After preparation, the physicochemical characterization of the nanoemulsions were performed which presented mean particle size between 200 and 300 nm, polydispersity index less than 0.3, negative zeta potential and acid pH. The nanoencapsulation was able to avoid the reduction of the cell viability caused by Mancozeb, while Eugenol was shown to be safe for cell use in both free and nanostructured forms, however the association of the two active compounds showed toxicity in the higher doses of Mancozeb. In the ecotoxicity tests, both free Mancozeb and Eugenol forms presented high toxic potential for soil, whereas the nanoencapsulation of these compounds did not cause a reduction in number of springtails. Therefore, from the tests performed, it was possible to observe that nanoencapsulation of Mancozeb and Eugenol is a safe alternative for the application of these compounds mainly in agriculture.


Assuntos
Artrópodes/efeitos dos fármacos , Dano ao DNA , Eugenol/toxicidade , Fungicidas Industriais/toxicidade , Maneb/toxicidade , Nanocápsulas/toxicidade , Zineb/toxicidade , Animais , Artrópodes/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Emulsões , Eugenol/química , Fungicidas Industriais/química , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Maneb/química , Nanocápsulas/química , Tamanho da Partícula , Phyllachorales/efeitos dos fármacos , Solo/química , Testes de Toxicidade , Zineb/química
7.
Ecotoxicol Environ Saf ; 166: 207-214, 2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30269016

RESUMO

Veterinary medicines are widely applied for the treatment and prevention of animal diseases. Consequently, animal manure contains significant amounts of environmental pollutants that are potential sources of environmental pollution when inappropriately applied in soils. This work aimed to evaluate ecotoxicological effects of doses of commercial fipronil, neem cake and neem extract in the survival and reproduction of earthworms (Eisenia andrei), enchytraeidae (Enchytraeus crypticus) and springtails (Folsomia candida) in Oxisol and tropical artificial soil (TAS). Applications of fipronil, neem cake and extract in soil were carried out according to standardized ISO methodologies by using a random experimental design with five replicates. Toxic effects of fipronil for springtails in Oxisol and TAS were observed with LC50 of 0.26 mg kg-1 (0.18-0.35 mg kg-1) and 0.29 mg kg-1 (0.22-0.37 mg kg-1), respectively. It was not observed significant toxic effects of fipronil for earthworms and enchytraeidae in both soils. However, significant amounts of juvenile earthworm and adult enchytraeidae decreased in fipronil doses higher than 10 mg kg-1. Neem cake and extract were not toxic for earthworms and enchytraeidae but, significant amounts of juvenile springtails decreased in neem cake doses from 500 to 1000 mg kg-1. It can be concluded that the use of veterinary medicines containing synthetic compounds for preventing diseases in animals needs to be controlled to avoid environmental pollution after applying manure in soil. Veterinary medicines containing natural compounds as neem cake and extract are eco-friendly and could be efficiently applied in soil in a sustainable way.


Assuntos
Azadirachta/química , Pirazóis/toxicidade , Poluentes do Solo/toxicidade , Animais , Artrópodes/efeitos dos fármacos , Artrópodes/fisiologia , Oligoquetos/efeitos dos fármacos , Oligoquetos/fisiologia , Extratos Vegetais/toxicidade , Reprodução/efeitos dos fármacos , Solo , Clima Tropical , Drogas Veterinárias/toxicidade
8.
J Appl Toxicol ; 42(4): 553-569, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34636049

RESUMO

The demand for food has intensified production in agricultural areas and stimulated the use of nanotechnology to develop new inputs, especially nanoparticle materials. In this new context, predicting the impact of using nanoparticles on non-target organisms becomes a necessary measure. The aim of this study was to evaluate the ecotoxicological potential of magnesium (Mg2+ ) added via magnesium oxide nanoparticles (MgO-NPs), magnesium oxide (MgO), and magnesium nitrate hexahydrate (Mg [NO3 ]2 ·6H2 O) incubated over time in tropical soil on earthworms (Eisenia andrei), springtails (Folsomia candida), and enchytraeids (Enchytraeus crypticus). Tests were conducted using a clay-textured Latossolo Vermelho distrófico (Oxisol), which received increasing doses of Mg2+ (0; 25; 50; 100; 200 and 400 mg kg−1 of soil) from the three sources tested added to the soil. Treated soil was incubated for 120 days in a room with controlled temperature and photoperiod, and the ecotoxicological tests were performed at 0, 60, and 120 days of incubation. Despite having caused reduction in the reproduction of F. candida at the incubation time 0, MgO-NPs showed a low toxic potential against the other species studied, with toxicity only at a higher dose of 50 mg Mg kg−1 when compared to the other sources of Mg2+ applied to the soil (MgO and Mg [NO3 ]2 ·6H2 O). Responses associated with incubation times showed that all magnesium sources tested have lower toxicity over incubation time.


Assuntos
Nanopartículas , Poluentes do Solo , Ecotoxicologia , Óxido de Magnésio , Nanopartículas/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
9.
Ecotoxicol Environ Saf ; 139: 73-77, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28110048

RESUMO

Glycerol Monolaurate (GML) is a compound with known antimicrobial potential, however it is not much used due to its low solubility in water and high melting point. The nanoencapsulation of some drugs offers several advantages such as improved stability and solubility in water. The present study aimed to produce, characterize, and evaluate the ecotoxicity of GML nanocapsules. The nanocapsules were produced and presented a mean diameter of 210nm, polydispersity index of 0.044, and zeta potential of -23.4mV. The electron microscopy images showed the nanometric size and spherical shape. The assay in soil showed that GML has a high toxicity while the GML nanocapsules showed decreased toxic effects. Nanostructuration also protected the Rhamdia quelen against the toxic effects of GML. Concluding, the formulation shows positive results and is useful to predict the success of development besides not damaging the soil.


Assuntos
Anti-Infecciosos , Artrópodes/crescimento & desenvolvimento , Peixes/crescimento & desenvolvimento , Lauratos/toxicidade , Monoglicerídeos/toxicidade , Nanocápsulas/toxicidade , Poluentes do Solo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/toxicidade , Artrópodes/efeitos dos fármacos , Ecotoxicologia , Exposição Ambiental
10.
Ecotoxicol Environ Saf ; 122: 91-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26218553

RESUMO

Swine production in Brazil results in a great volume of manure that normally is disposed of as agricultural fertilizer. However, this form of soil disposal, generally on small farms, causes the accumulation of large amounts of manure and this results in contaminated soil and water tables. To evaluate the effects of increasing concentrations of swine manure on earthworms, several ecotoxicological tests were performed using Eisenia andrei as test organism in different tropical soils, classified respectively as Ultisol, Oxisol, and Entisol, as well as Tropical Artificial Soil (TAS). The survival, reproduction and behavior of the earthworms were evaluated in experiments using a completely randomized design, with five replications. In the Ultisol, Oxisol and TAS the swine manure showed no lethality, but in the Entisol it caused earthworm mortality (LOEC=45 m(3)ha(-1)). In the Entisol, the waste reduced the reproductive rate and caused avoidance behavior in E. andrei (LOEC=30 m(3)ha(-1)) even in lower concentrations. The Entisol is extremely sandy, with low cation exchange capacity (CEC), and this may be the reason for the higher toxicity on soil fauna, with the soil not being able to hold large amounts of pollutants (e.g. toxic metals), but leaving them in bioavailable forms. These results should be a warning of the necessity to consider soil parameters (e.g. texture and CEC) when evaluating soil contamination by means of ecotoxicological assays, as there still are no standards for natural soils in tropical regions. E. andrei earthworms act as indicators for a soil to support disposal of swine manure without generating harm to agriculture and ecosystems.


Assuntos
Agricultura/métodos , Esterco , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Gerenciamento de Resíduos/métodos , Animais , Bioensaio , Brasil , Ecotoxicologia , Fertilizantes , Reprodução/efeitos dos fármacos , Solo , Suínos
11.
Sci Data ; 11(1): 22, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172139

RESUMO

Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.


Assuntos
Artrópodes , Animais , Ecossistema , Florestas , Estações do Ano , Solo
12.
Environ Sci Pollut Res Int ; 29(44): 66705-66715, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35504996

RESUMO

This study aimed to evaluate the effects of untreated pig manure from diets incorporating growth-promoting supplements (antibiotics and Zn oxide) on the survival and reproduction of Eisenia andrei earthworms. The tested manures were obtained from four different groups of pigs fed with four different diets: CS, a diet based on corn and soymeal; TR, a diet based on corn, soymeal, and ground wheat (15%); CSa, a diet based on corn and soymeal + 100 ppm of doxycycline + 50 ppm of colistin + 2500 ppm of Zn oxide; and TRa, a diet based on corn, soymeal, and ground wheat (15%) + 100 ppm of doxycycline + 50 ppm of colistin + 2500 ppm of Zn oxide. The study used two soils representative of the Southern region of Brazil (Oxisol and Entisol). In general, there were no significant differences between the different manures tested in each soil. However, there were differences in the toxicity manure on E. andrei between the soils, and the magnitude of this effect was dependent on the applied dose. In Oxisol, LC50 values were higher than 80 m3 ha-1, and EC50 varied from 9 to 27 m3 ha-1. In Entisol, the LC50 values were below the lowest dose tested (< 25 m3 ha-1), and EC50 remained around 5 m3 ha-1. It may be possible that the effects observed were attributed to an excess of nitrogen, copper, and zinc, promoted by the addition of the untreated manure and how these factors interacted with soil type.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Antibacterianos/farmacologia , Colistina , Cobre/farmacologia , Dieta , Doxiciclina/farmacologia , Esterco , Nitrogênio/farmacologia , Óxidos/farmacologia , Solo , Poluentes do Solo/análise , Suínos , Zinco/farmacologia
13.
Environ Sci Pollut Res Int ; 29(18): 27104-27114, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34981395

RESUMO

We evaluated the toxicity and risk (via toxicity exposure ratio approach - TER) of the insecticide fipronil to collembolan's growth and reproduction in three tropical soils, under increasing atmospheric temperatures. Chronic toxicity tests were performed with Folsomia candida in tropical artificial soil (TAS), oxisol, and entisol spiked with increasing concentrations of fipronil, at three room temperature scenarios: a standard (20 ± 2 °C), a tropical condition (25 ± 2 °C) and a global warming simulation (27 ± 2 °C). Temperatures influenced the fipronil effects on the species reproduction differently between soil types. In TAS and oxisol the highest toxicities (EC50-based) were found at 27 °C (EC50 TAS = 0.81, 0.70, 0.31 mg kg-1; EC50 OXISOL = 0.52, 0.54, 0.40 mg kg-1; at 20, 25, and 27 °C, respectively). In entisol, the toxicity at 27 °C was lower compared to 25 and 20 °C (EC50 ENTISOL = 0.33, 0.24, 0.12 mg kg-1, respectively). Fipronil concentrations also increased the proportion of small juveniles (growth reduction) in all tested soils. However, this effect was greater (EC10-based) at higher temperatures (25 and/or 27 °C), regardless of the soil type. TER approach revealed a significant risk of fipronil in entisol, regardless of the tested temperature, while in other soils the risk was found significant only at the higher temperatures (25 and 27 °C for TAS, and 27 °C for oxisol). These results indicate that exposures to fipronil at high temperatures (e.g., those resulting from climate change) can threaten F. candida populations, depending on the soil type.


Assuntos
Artrópodes , Poluentes do Solo , Animais , Pirazóis , Reprodução , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Temperatura
14.
Environ Sci Pollut Res Int ; 29(37): 56370-56378, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35332455

RESUMO

The aim of this study was to assess the effect of temperature on the toxicity of fipronil toward earthworms (Eisenia andrei) in two Brazilian soils (Entisol and Oxisol) with contrasting textures. In the case of Entisol, the influence of soil moisture content on toxicity was also investigated. Earthworms were exposed for 56 days to soils spiked with increasing concentrations of fipronil (8.95, 19.48, 38.22, 155.61, and 237.81 mg kg-1 for Entisol; 12.99, 27.94, 48.42, 204.67, and 374.29 mg kg-1 for Oxisol) under scenarios with different combinations of temperature (20, 25 and 27 °C) and soil moisture content (60 and 30% of water holding capacity (WHC) for Entisol and 60% WHC for Oxisol). The number of juveniles produced was taken as the endpoint, and a risk assessment was performed based on the hazard quotient (HQ). In Entisol, at 60% WHC the fipronil toxicity decreased at 27 °C compared with the other temperatures tested (EC50 = 52.58, 48.48, and 110 mg kg-1 for 20, 25, and 27 °C, respectively). In the case of Oxisol at 60% WHC, the fipronil toxicity increased at 27 °C compared with other temperatures (EC50 = 277.57, 312.87, and 39.89 mg kg-1 at 20, 25, and 27 °C, respectively). An increase in fipronil toxicity was also observed with a decrease in soil moisture content in Entisol at 27 °C (EC50 = 27.95 and 110 mg kg-1 for 30% and 60% WHC, respectively). The risk of fipronil was only significant at 27 °C in Entisol and Oxisol with water contents of 30% and 60% WHC, respectively, revealing that higher temperatures are able to increase the risk of fipronil toxicity toward earthworms depending on soil type and soil moisture content. The results reported herein show that soil properties associated with climatic shifts could enhance the ecotoxicological effects and risk of fipronil for earthworms, depending on the type of soil.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Pirazóis , Solo , Poluentes do Solo/análise , Temperatura , Água
15.
Sci Data ; 8(1): 136, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021166

RESUMO

Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.


Assuntos
Biodiversidade , Oligoquetos/classificação , Animais , Biomassa
16.
Sci Rep ; 10(1): 10687, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612105

RESUMO

Wastes generated in pig production are widely used as agricultural fertilizers. Nevertheless, such form of disposal supplies large amounts of waste in soils annually and can cause environmental pollution. The ecological risk of this practice to soil organisms has received little attention. Ecotoxicological tests are used to evaluate the toxicity of contaminants added to the soil biota. The aimed to evaluate the effect of liquid pig manure (LPM) on the reproduction of Eisenia andrei and Enchytraeus crypticus when applied in natural soils. LPM doses caused effects on earthworm reproduction in both soils, with EC50 of 112 and 150 m3 ha-1 in the Entisol and Nitosol, respectively. On enchytraeids, LPM had bigger effects, leading to EC50 of 17.7 and 45.0 m3 ha-1 in the Entisol and Nitosol, respectively. The results emphasize the importance to consider the ecological risks of LPM of conducting studies with natural soils and edaphic fauna as indicators.


Assuntos
Esterco/análise , Oligoquetos/crescimento & desenvolvimento , Poluentes do Solo/análise , Agricultura , Animais , Brasil , Ecossistema , Ecotoxicologia , Fertilizantes/análise , Metais Pesados/análise , Solo/química , Suínos
17.
Environ Pollut ; 267: 115565, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254719

RESUMO

The influence of temperature on the chronic toxicity and risk of imidacloprid to soil non-target species was assessed in tropical soils. Earthworms Eisenia andrei and collembolans Folsomia candida were exposed to a tropical artificial soil (TAS) and two natural tropical soils from Brazil (Entisol and Oxisol) with increasing concentrations of imidacloprid under atmospheric temperatures of 20, 25 and 28 °C. The effect of temperature on the reproduction of both species was assessed through the number of juveniles and earthworm's growth, and the risk associated was estimated through the Toxicity-Exposure Ratio (TER). Toxicity of imidacloprid increased with temperature in all tested soils, being generally lower in TAS soil (EC50s of 1.48, 0.66 and 0.40 mg kg-1 for E. andrei and 0.3, 0.2 and 0.06 mg kg-1 for F. candida at 20, 25 and 28 °C, respectively) compared to Entisol (EC50s of 0.19, 0.03 and 0.14 mg kg-1 for E. andrei and 0.04, 0.02, 0.01 mg kg-1 for F. candida at 20, 25 and 28 °C, respectively) and Oxisol (EC50s of 0.21, 0.07, 0.06 mg kg-1 for E. andrei and 0.16, 0.09, 0.06 mg kg-1 for F. candida at 20, 25 and 28 °C, respectively) within each temperature for both species. These values indicate that properties of TAS may not be representative of natural/local soils to adequately estimate the toxicity of pesticides to non-target soil species. At higher temperatures, the variability of imidacloprid toxicity between soils was lower, which suggests that the influence of soil properties on imidacloprid toxicity was overshadowed by temperature. TER values revealed that risk is also greater at higher temperatures. Data reported enforce the need for the inclusion of more realistic conditions in single-species tests in prospective risk assessment of pesticides to avoid underestimation of risk to non-target species.


Assuntos
Artrópodes , Oligoquetos , Poluentes do Solo , Animais , Brasil , Neonicotinoides , Nitrocompostos , Estudos Prospectivos , Reprodução , Solo , Poluentes do Solo/toxicidade , Temperatura
18.
J Environ Qual ; 49(6): 1491-1501, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33459410

RESUMO

Shifts in precipitation regimes due to the predicted climate changes can alter the water content in tropical soils and, consequently, may influence the toxicity of pesticides to soil fauna. This study assessed the influence of soil moisture content on the toxicity of the insecticide imidacloprid to the collembolans Folsomia candida in two tropical soils and evaluated the risk of this active ingredient for this species in the soils tested through the toxicity exposure ratio approach. Acute and chronic toxicity tests with F. candida were performed using an Entisol and an Oxisol. The soils were spiked with increasing imidacloprid concentrations while simulating normal water availability (60% of the water holding capacity [WHC]) and water restriction (30 or 45% WHC) for the tests. In the Oxisol, the reduction of soil moisture content significantly increased the toxic effects of imidacloprid on F. candida's survival (LC50 at 45% WHC = 23.8 vs. LC50 at 60% WHC >64 mg kg-1) and reproduction (effective concentration causing reductions in species reproduction of 50% [EC50] at 45% WHC = 0.32 vs. EC50 at 60% WHC = 2.83 mg kg-1), but in the Entisol no clear influence of the soil moisture on the toxicity of imidacloprid for collembolans was found. A significant risk for F. candida was observed in the Oxisol only when in water restriction, whereas in the Entisol it occurred regardless of soil moisture, suggesting that the imidacloprid hazard and risk for F. candida may be increased if soil moisture decreases due to climate changes, depending on the soil type.


Assuntos
Poluentes do Solo , Solo , Animais , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Poluentes do Solo/análise
19.
Environ Toxicol Pharmacol ; 78: 103386, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32339906

RESUMO

Poultry litter is used as a fertilizer due to the high concentration of nutrients. However, this material receives application of medicines, whether they are used to treat animals or the litter itself. Thus, the objective was to evaluate if the application in soils of poultry litter doses treated with two insecticides (cypermethrin and cinnamon oil) used to control of the Alphitobius diaperinus, affect the reproduction of Enchytraeus crypticus, and the insecticides effects over time, trough of ecotoxicological tests using soils with different textural classes an Entisol and an Oxisol. In the Oxisol the application of poultry litter stimulated the E. crypticus reproduction regardless of the insecticide and the collection time. In Entisol the poultry litter showed a toxicity at 10 t ha-1 when treated with cypermethrin and at 30 t ha-1 with cinnamon oil. Entisol results show that cypermethrin affects non-target edaphic organisms soon after spraying, but over time has reduced toxicity unlike cinnamon oil.


Assuntos
Cinnamomum zeylanicum , Fertilizantes/toxicidade , Inseticidas/toxicidade , Óleos Voláteis/toxicidade , Oligoquetos/efeitos dos fármacos , Piretrinas/toxicidade , Poluentes do Solo/toxicidade , Animais , Galinhas , Esterco , Reprodução/efeitos dos fármacos
20.
Sci Total Environ ; 694: 133602, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31382175

RESUMO

The recently approved European Union (EU) Circular Economy Package intends to boost the production of fertilizing products, such as composts obtained from urban wastes (UWC) and the harmonization of their quality standards (certification), to avoid market rejection. UWC quality assessment frameworks in Europe, including the Portuguese and EU latest proposal on regulation of UWC production/commercialization are mostly based on physical-chemical and agronomical characterization. These do not provide any insight on the fraction of contaminant/mixture of contaminants bioavailable for non-target organisms, nor the existence of potential antagonistic and/or synergistic effects on them. The main objective of the present work if to evaluate the effects of UWC application on crop soils using seven standard ecotoxicological tests. Five UWC, two derived from source-separated organic wastes and three from mixed urban wastes were selected and tested using a battery of ISO guideline assays with plants and soil invertebrates. The tested doses intended to simulate over-use and repeated application scenarios, common practices among farmers. The results showed that the highest toxicity was observed for the UWC originated from source-separated organic wastes, when using concentrations slightly above the maximum annual doses. Excepting for this UWC, all the derived NOEC (No Observed Effect Concentration) were equal or higher than the maximum annual doses. The UWC toxicity for the tested species increased as follows: T. aestivum < L. sativa < E. crypticus < F. candida < E. andrei. UWC salinity, rather than the content of potentially toxic elements (PTEs), could explain the negative effects observed, considering that the composts are all equally stabilized. These results reinforce the need to include data from biological susceptibility of the receptors at risk on the existing regulation, to obtain a more realistic view of the potential risks and to adapt the UWC application practices, ultimately boosting the confidence of target-consumers.


Assuntos
Compostagem/normas , Poluentes do Solo , Resíduos , Animais , Cidades , Compostagem/métodos , Ecotoxicologia , Europa (Continente) , Invertebrados , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA