Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 22(2): 207-215, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36536139

RESUMO

Competition between ground states at phase boundaries can lead to significant changes in properties under stimuli, particularly when these ground states have different crystal symmetries. A key challenge is to stabilize and control the coexistence of symmetry-distinct phases. Using BiFeO3 layers confined between layers of dielectric TbScO3 as a model system, we stabilize the mixed-phase coexistence of centrosymmetric and non-centrosymmetric BiFeO3 phases at room temperature with antipolar, insulating and polar semiconducting behaviour, respectively. Application of orthogonal in-plane electric (polar) fields results in reversible non-volatile interconversion between the two phases, hence removing and introducing centrosymmetry. Counterintuitively, we find that an electric field 'erases' polarization, resulting from the anisotropy in octahedral tilts introduced by the interweaving TbScO3 layers. Consequently, this interconversion between centrosymmetric and non-centrosymmetric phases generates changes in the non-linear optical response of over three orders of magnitude, resistivity of over five orders of magnitude and control of microscopic polar order. Our work establishes a platform for cross-functional devices that take advantage of changes in optical, electrical and ferroic responses, and demonstrates octahedral tilts as an important order parameter in materials interface design.

2.
Nano Lett ; 23(11): 4901-4907, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37262350

RESUMO

Tip-enhanced photoluminescence (TRPL) is a powerful technique for spatially and spectrally probing local optical properties of 2-dimensional (2D) materials that are modulated by the local heterogeneities, revealing inaccessible dark states due to bright state overlap in conventional far-field microscopy at room temperature. While scattering-type near-field probes have shown the potential to selectively enhance and reveal dark exciton emission, their technical complexity and sensitivity can pose challenges under certain experimental conditions. Here, we present a highly reproducible and easy-to-fabricate near-field probe based on nanoimprint lithography and fiber-optic excitation and collection. The novel near-field measurement configuration provides an ∼3 orders of magnitude out-of-plane Purcell enhancement, diffraction-limited excitation spot, and subdiffraction hyperspectral imaging resolution (below 50 nm) of dark exciton emission. The effectiveness of this high spatial XD mapping technique was then demonstrated through reproducible hyperspectral mapping of oxidized sites and bubble areas.

3.
Opt Express ; 31(12): 20440-20448, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381438

RESUMO

Scanning near-field optical microscopy (SNOM) is an important technique used to study the optical properties of material systems at the nanoscale. In previous work, we reported on the use of nanoimprinting to improve the reproducibility and throughput of near-field probes including complicated optical antenna structures such as the 'campanile' probe. However, precise control over the plasmonic gap size, which determines the near-field enhancement and spatial resolution, remains a challenge. Here, we present a novel approach to fabricating a sub-20 nm plasmonic gap in a near-field plasmonic probe through the controlled collapse of imprinted nanostructures using atomic layer deposition (ALD) coatings to define the gap width. The resulting ultranarrow gap at the apex of the probe provides a strong polarization-sensitive near-field optical response, which results in an enhancement of the optical transmission in a broad wavelength range from 620 to 820 nm, enabling tip-enhanced photoluminescence (TEPL) mapping of 2-dimensional (2D) materials. We demonstrate the potential of this near-field probe by mapping a 2D exciton coupled to a linearly polarized plasmonic resonance with below 30 nm spatial resolution. This work proposes a novel approach for integrating a plasmonic antenna at the apex of the near-field probe, paving the way for the fundamental study of light-matter interactions at the nanoscale.

4.
J Am Chem Soc ; 144(29): 13327-13333, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35849827

RESUMO

The structure of interfacial water near suspended graphene electrodes in contact with aqueous solutions of Na2SO4, NH4Cl, and (NH4)2SO4 has been studied using confocal Raman spectroscopy, sum frequency vibrational spectroscopy, and Kelvin probe force microscopy. SO42- anions were found to preferentially accumulate near the interface at an open circuit potential (OCP), creating an electrical field that orients water molecules below the interface, as revealed by the increased intensity of the O-H stretching peak of H-bonded water. No such increase is observed with NH4Cl at the OCP. The intensity of the dangling O-H bond stretching peak however remains largely unchanged. The degree of orientation of the water molecules as well as the electrical double layer strength increased further when positive voltages are applied. Negative voltages on the other hand produced only small changes in the intensity of the H-bonded water peaks but affected the intensity and frequency of dangling O-H bond peaks. The TOC figure is an oversimplified representation of the system in this work.


Assuntos
Grafite , Eletrodos , Íons/química , Análise Espectral Raman , Água/química
5.
Microsc Microanal ; 27(4): 712-743, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34018475

RESUMO

Scanning transmission electron microscopy (STEM) allows for imaging, diffraction, and spectroscopy of materials on length scales ranging from microns to atoms. By using a high-speed, direct electron detector, it is now possible to record a full two-dimensional (2D) image of the diffracted electron beam at each probe position, typically a 2D grid of probe positions. These 4D-STEM datasets are rich in information, including signatures of the local structure, orientation, deformation, electromagnetic fields, and other sample-dependent properties. However, extracting this information requires complex analysis pipelines that include data wrangling, calibration, analysis, and visualization, all while maintaining robustness against imaging distortions and artifacts. In this paper, we present py4DSTEM, an analysis toolkit for measuring material properties from 4D-STEM datasets, written in the Python language and released with an open-source license. We describe the algorithmic steps for dataset calibration and various 4D-STEM property measurements in detail and present results from several experimental datasets. We also implement a simple and universal file format appropriate for electron microscopy data in py4DSTEM, which uses the open-source HDF5 standard. We hope this tool will benefit the research community and help improve the standards for data and computational methods in electron microscopy, and we invite the community to contribute to this ongoing project.

6.
Nano Lett ; 20(9): 6364-6371, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786946

RESUMO

Free-standing ultrathin (∼2 nm) films of several oxides (Al2O3,TiO2, and others) have been developed, which are mechanically robust and transparent to electrons with Ekin ≥ 200 eV and to photons. We demonstrate their applicability in environmental X-ray photoelectron and infrared spectroscopy for molecular level studies of solid-gas (≥1 bar) and solid-liquid interfaces. These films act as membranes closing a reaction cell and as substrates and electrodes for electrochemical reactions. The remarkable properties of such ultrathin oxides membranes enable atomic/molecular level studies of interfacial phenomena, such as corrosion, catalysis, electrochemical reactions, energy storage, geochemistry, and biology, in a broad range of environmental conditions.

7.
Nat Mater ; 18(11): 1172-1176, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31548631

RESUMO

Miniaturized lasers are an emerging platform for generating coherent light for quantum photonics, in vivo cellular imaging, solid-state lighting and fast three-dimensional sensing in smartphones1-3. Continuous-wave lasing at room temperature is critical for integration with opto-electronic devices and optimal modulation of optical interactions4,5. Plasmonic nanocavities integrated with gain can generate coherent light at subwavelength scales6-9, beyond the diffraction limit that constrains mode volumes in dielectric cavities such as semiconducting nanowires10,11. However, insufficient gain with respect to losses and thermal instabilities in nanocavities has limited all nanoscale lasers to pulsed pump sources and/or low-temperature operation6-9,12-15. Here, we show continuous-wave upconverting lasing at room temperature with record-low thresholds and high photostability from subwavelength plasmons. We achieve selective, single-mode lasing from Yb3+/Er3+-co-doped upconverting nanoparticles conformally coated on Ag nanopillar arrays that support a single, sharp lattice plasmon cavity mode and greater than wavelength λ/20 field confinement in the vertical dimension. The intense electromagnetic near-fields localized in the vicinity of the nanopillars result in a threshold of 70 W cm-2, orders of magnitude lower than other small lasers. Our plasmon-nanoarray upconverting lasers provide directional, ultra-stable output at visible frequencies under near-infrared pumping, even after six hours of constant operation, which offers prospects in previously unrealizable applications of coherent nanoscale light.


Assuntos
Lasers , Nanotecnologia , Fenômenos Ópticos , Fótons , Temperatura
8.
Phys Rev Lett ; 119(8): 087401, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28952768

RESUMO

Optoelectronic excitations in monolayer MoS_{2} manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena-critical to both many-body physics exploration and device applications-presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

9.
J Am Chem Soc ; 138(41): 13551-13560, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27700081

RESUMO

Recently developed all-organic emitters used in display applications achieve high brightness by harvesting triplet populations via thermally activated delayed fluorescence. The photophysical properties of these emitters therefore involve new inherent complexities and are strongly affected by interactions with their host material in the solid state. Ensemble measurements occlude the molecular details of how host-guest interactions determine fundamental properties such as the essential balance of singlet oscillator strength and triplet harvesting. Therefore, using time-resolved fluorescence spectroscopy, we interrogate these emitters at the single-molecule level and compare their properties in two distinct glassy polymer hosts. We find that nonbonding interactions with aromatic moieties in the host appear to mediate the molecular configurations of the emitters, but also promote nonradiative quenching pathways. We also find substantial heterogeneity in the time-resolved photoluminescence of these emitters, which is dominated by static disorder in the polymer. Finally, since singlet-triplet cycling underpins the mechanism for increased brightness, we present the first room-temperature measurement of singlet-triplet equilibration dynamics in this family of emitters. Our observations present a molecular-scale interrogation of host-guest interactions in a disordered film, with implications for highly efficient organic light-emitting devices. Combining a single-molecule experimental technique with an emitter that is sensitive to triplet dynamics, yet read out via fluorescence, should also provide a complementary approach to performing fundamental studies of glassy materials over a large dynamic range of time scales.

10.
Emerg Med J ; 32(12): 926-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26598631

RESUMO

INTRODUCTION: Non-compressible torso haemorrhage (NCTH) carries a high mortality in trauma as many patients exsanguinate prior to definitive haemorrhage control. Resuscitative endovascular balloon occlusion of the aorta (REBOA) is an adjunct that has the potential to bridge patients to definitive haemostasis. However, the proportion of trauma patients in whom REBOA may be utilised is unknown. METHODS: We conducted a population based analysis of 2012-2013 Trauma Audit and Research Network (TARN) data. We identified the number of patients in whom REBOA may have been utilised, defined by an Abbreviated Injury Scale score ≥3 to abdominal solid organs, abdominal or pelvic vasculature, pelvic fracture with ring disruption or proximal traumatic lower limb amputation, together with a systolic blood pressure <90 mm Hg. Patients with non-compressible haemorrhage in the mediastinum, axilla, face or neck were excluded. RESULTS: During 2012-2013, 72 677 adult trauma patients admitted to hospitals in England and Wales were identified. 397 patients had an indication(s) and no contraindications for REBOA with evidence of haemorrhagic shock: 69% men, median age 43 years and median Injury Severity Score 32. Overall mortality was 32%. Major trauma centres (MTCs) received the highest concentration of potential REBOA patients, and would be anticipated to receive a patient in whom REBOA may be utilised every 95 days, increasing to every 46 days in the 10 MTCs with the highest attendance of this injury type. CONCLUSIONS: This TARN database analysis has identified a small group of severely injured, resource intensive patients with a highly lethal injury that is theoretically amenable to REBOA. The highest density of these patients is seen at MTCs, and as such a planned evaluation of REBOA should be further considered in these hospitals.


Assuntos
Aorta/cirurgia , Oclusão com Balão/métodos , Procedimentos Endovasculares/métodos , Traumatismo Múltiplo/terapia , Ressuscitação/métodos , Choque Hemorrágico/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Auditoria Clínica , Inglaterra/epidemiologia , Feminino , Humanos , Escala de Gravidade do Ferimento , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Choque Hemorrágico/mortalidade , Choque Hemorrágico/prevenção & controle , País de Gales/epidemiologia
11.
PLoS One ; 19(5): e0303109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805515

RESUMO

OBJECTIVES: In adult major trauma patients admission hypocalcaemia occurs in approximately half of cases and is associated with increased mortality. However, data amongst paediatric patients are limited. The objectives of this review were to determine the incidence of admission ionised hypocalcaemia in paediatric major trauma patients and to explore whether hypocalcaemia is associated with adverse outcomes. METHODS: A systematic review was conducted following PRISMA guidelines. All studies including major trauma patients <18 years old, with an ionised calcium concentration obtained in the Emergency Department (ED) prior to the receipt of blood products in the ED were included. The primary outcome was incidence of ionised hypocalcaemia. Random-effects Sidik-Jonkman modelling was executed for meta-analysis of mortality and pH difference between hypo- and normocalcaemia, Odds ratio (OR) was the reporting metric for mortality. The reporting metric for the continuous variable of pH difference was Glass' D (a standardized difference). Results are reported with 95% confidence intervals (CIs) and significance was defined as p <0.05. RESULTS: Three retrospective cohort studies were included. Admission ionised hypocalcaemia definitions ranged from <1.00 mmol/l to <1.16 mmol/l with an overall incidence of 112/710 (15.8%). For mortality, modelling with low heterogeneity (I2 39%, Cochrane's Q p = 0.294) identified a non-significant (p = 0.122) estimate of hypocalcaemia increasing mortality (pooled OR 2.26, 95% CI 0.80-6.39). For the pH difference, meta-analysis supported generation of a pooled effect estimate (I2 57%, Cochrane's Q p = 0.100). The effect estimate of the mean pH difference was not significantly different from null (p = 0.657), with the estimated pH slightly lower in hypocalcaemia (Glass D standardized mean difference -0.08, 95% CI -0.43 to 0.27). CONCLUSION: Admission ionised hypocalcaemia was present in at least one in six paediatric major trauma patients. Ionised hypocalcaemia was not identified to have a statistically significant association with mortality or pH difference.


Assuntos
Hipocalcemia , Hipocalcemia/epidemiologia , Humanos , Incidência , Criança , Ferimentos e Lesões/complicações , Ferimentos e Lesões/mortalidade , Cálcio/sangue , Adolescente , Estudos Retrospectivos , Admissão do Paciente
12.
ACS Nano ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950893

RESUMO

Stacking van der Waals crystals allows for the on-demand creation of a periodic potential landscape to tailor the transport of quasiparticle excitations. We investigate the diffusion of photoexcited electron-hole pairs, or excitons, at the interface of WS2/WSe2 van der Waals heterostructure over a wide range of temperatures. We observe the appearance of distinct interlayer excitons for parallel and antiparallel stacking and track their diffusion through spatially and temporally resolved photoluminescence spectroscopy from 30 to 250 K. While the measured exciton diffusivity decreases with temperature, it surprisingly plateaus below 90 K. Our observations cannot be explained by classical models like hopping in the moiré potential. A combination of ab initio theory and molecular dynamics simulations suggests that low-energy phonons arising from the mismatched lattices of moiré heterostructures, also known as phasons, play a key role in describing and understanding this anomalous behavior of exciton diffusion. Our observations indicate that the moiré potential landscape is dynamic down to very low temperatures and that the phason modes can enable efficient transport of energy in the form of excitons.

13.
Nat Commun ; 15(1): 3556, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670956

RESUMO

Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS2, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime. Our computed database spans more than 700 charged defects formed through substitution on the tungsten or sulfur site. We found that sulfur substitutions enable the most promising quantum defects. We computationally identify the neutral cobalt substitution to sulfur (Co S 0 ) and fabricate it with scanning tunneling microscopy (STM). The Co S 0 electronic structure measured by STM agrees with first principles and showcases an attractive quantum defect. Our work shows how HT computational screening and nanoscale synthesis routes can be combined to design promising quantum defects.

14.
Scand J Trauma Resusc Emerg Med ; 31(1): 27, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308937

RESUMO

BACKGROUND: Helicopter Emergency Medical Services (HEMS) are a limited and expensive resource, and should be intelligently tasked. HEMS dispatch was identified as a key research priority in 2011, with a call to identify a 'general set of criteria with the highest discriminating potential'. However, there have been no published data analyses in the past decade that specifically address this priority, and this priority has been reaffirmed in 2023. The objective of this study was to define the dispatch criteria available at the time of the initial emergency call with the greatest HEMS utility using a large, regional, multi-organizational dataset in the UK. METHODS: This retrospective observational study utilized dispatch data from a regional emergency medical service (EMS) and three HEMS organisations in the East of England, 2016-2019. In a logistic regression model, Advanced Medical Priority Dispatch System (AMPDS) codes with ≥ 50 HEMS dispatches in the study period were compared with the remainder to identify codes with high-levels of HEMS patient contact and HEMS-level intervention/drug/diagnostic (HLIDD). The primary outcome was to identify AMPDS codes with a > 10% HEMS dispatch rate of all EMS taskings that would result in 10-20 high-utility HEMS dispatches per 24-h period in the East of England. Data were analysed in R, and are reported as number (percentage); significance was p < 0.05. RESULTS: There were n = 25,491 HEMS dispatches (6400 per year), of which n = 23,030 (90.3%) had an associated AMPDS code. n = 13,778 (59.8%) of HEMS dispatches resulted in patient contact, and n = 8437 (36.6%) had an HLIDD. 43 AMPDS codes had significantly greater rates of patient contact and/or HLIDD compared to the reference group. In an exploratory analysis, a cut-off of ≥ 70% patient contact rate and/or ≥ 70% HLIDD (with a > 10% HEMS dispatch of all EMS taskings) resulted in 17 taskings per 24-h period. This definition derived nine AMPDS codes with high HEMS utility. CONCLUSION: We have identified nine 'golden' AMPDS codes, available at the time of initial emergency call, that are associated with high-levels of whole-system and HEMS utility in the East of England. We propose that UK EMS should consider immediate HEMS dispatch to these codes.


Assuntos
Despacho de Emergência Médica , Serviços Médicos de Emergência , Humanos , Estudos Retrospectivos , Inglaterra , Aeronaves
15.
Rev Sci Instrum ; 94(3): 033902, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012819

RESUMO

The ability to correlate optical hyperspectral mapping and high resolution topographic imaging is critically important to gain deep insight into the structure-function relationship of nanomaterial systems. Scanning near-field optical microscopy can achieve this goal, but at the cost of significant effort in probe fabrication and experimental expertise. To overcome these two limitations, we have developed a low-cost and high-throughput nanoimprinting technique to integrate a sharp pyramid structure on the end facet of a single-mode fiber that can be scanned with a simple tuning-fork technique. The nanoimprinted pyramid has two main features: (1) a large taper angle (∼70°), which determines the far-field confinement at the tip, resulting in a spatial resolution of 275 nm, an effective numerical aperture of 1.06, and (2) a sharp apex with a radius of curvature of ∼20 nm, which enables high resolution topographic imaging. Optical performance is demonstrated through evanescent field distribution mapping of a plasmonic nanogroove sample, followed by hyperspectral photoluminescence mapping of nanocrystals using a fiber-in-fiber-out light coupling mode. Through comparative photoluminescence mapping on 2D monolayers, we also show a threefold improvement in spatial resolution over chemically etched fibers. These results show that the bare nanoimprinted near-field probes provide simple access to spectromicroscopy correlated with high resolution topographic mapping and have the potential to advance reproducible fiber-tip-based scanning near-field microscopy.

16.
Adv Mater ; 35(17): e2210562, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739113

RESUMO

Despite extensive studies on size effects in ferroelectrics, how structures and properties evolve in antiferroelectrics with reduced dimensions still remains elusive. Given the enormous potential of utilizing antiferroelectrics for high-energy-density storage applications, understanding their size effects will provide key information for optimizing device performances at small scales. Here, the fundamental intrinsic size dependence of antiferroelectricity in lead-free NaNbO3 membranes is investigated. Via a wide range of experimental and theoretical approaches, an intriguing antiferroelectric-to-ferroelectric transition upon reducing membrane thickness is probed. This size effect leads to a ferroelectric single-phase below 40 nm, as well as a mixed-phase state with ferroelectric and antiferroelectric orders coexisting above this critical thickness. Furthermore, it is shown that the antiferroelectric and ferroelectric orders are electrically switchable. First-principle calculations further reveal that the observed transition is driven by the structural distortion arising from the membrane surface. This work provides direct experimental evidence for intrinsic size-driven scaling in antiferroelectrics and demonstrates enormous potential of utilizing size effects to drive emergent properties in environmentally benign lead-free oxides with the membrane platform.

17.
Nano Lett ; 11(10): 4265-9, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21879729

RESUMO

We perform spectrally resolved cathodoluminescence (CL) imaging nanoscopy using a 30 keV electron beam to identify the resonant modes of an ultrathin (20 nm), laterally tapered plasmonic Ag nanostrip antenna. We resolve with deep-subwavelength resolution four antenna resonances (resonance orders m = 2-5) that are ascribed to surface plasmon polariton standing waves that are confined on the strip. We map the local density of states on the strip surface and show that it has contributions from symmetric and antisymmetric surface plasmon polariton modes, each with a very different mode index. This work illustrates the power of CL experiments that can visualize hidden modes that for symmetry reasons have been elusive in optical light scattering experiments.

18.
Nanoscale ; 14(20): 7569-7578, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35502865

RESUMO

Mapping the optical response of buried interfaces with nanoscale spatial resolution is crucial in several systems where an active component is embedded within a buffer layer for structural or functional reasons. Here, we demonstrate that cathodoluminescence microscopy is not only an ideal tool for visualizing buried interfaces, but can be optimized through heterostructure design. We focus on the prototypical system of monolayers of semiconducting transition metal dichalcogenide sandwiched between hexagonal boron nitride layers. We leverage the encapsulating layers to tune the nanoscale spatial resolution achievable in cathodoluminescence mapping while also controlling the brightness of the emission. Thicker encapsulation layers result in a brighter emission while thinner ones enhance the spatial resolution at the expense of the signal intensity. We find that a favorable trade-off between brightness and resolution is achievable up to about ∼100 nm of total encapsulation. Beyond this value, the brightness gain is marginal, while the spatial resolution enters a regime that is achievable by diffraction-limited optical microscopy. By preparing samples of varying encapsulation thickness, we are able to determine a surprisingly isotropic exciton diffusion length of >200 nm within the hexagonal boron nitride which is the dominant factor that determines spatial resolution. We further demonstrate that we can overcome the exciton diffusion-limited spatial resolution by using spectrally distinct signals, which is the case for nanoscale inhomogeneities within monolayer transition metal dichalcogenides.

19.
Sci Adv ; 8(6): eabj5881, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138890

RESUMO

Ferroelectric semiconductors are rare materials with both spontaneous polarizations and visible light absorptions that are promising for designing functional photoferroelectrics, such as optical switches and ferroelectric photovoltaics. The emerging halide perovskites with remarkable semiconducting properties also have the potential of being ferroelectric, yet the evidence of robust ferroelectricity in the typical three-dimensional hybrid halide perovskites has been elusive. Here, we report on the investigation of ferroelectricity in all-inorganic halide perovskites, CsGeX3, with bandgaps of 1.6 to 3.3 eV. Their ferroelectricity originates from the lone pair stereochemical activity in Ge (II) that promotes the ion displacement. This gives rise to their spontaneous polarizations of ~10 to 20 µC/cm2, evidenced by both ab initio calculations and key experiments including atomic-level ionic displacement vector mapping and ferroelectric hysteresis loop measurement. Furthermore, characteristic ferroelectric domain patterns on the well-defined CsGeBr3 nanoplates are imaged with both piezo-response force microscopy and nonlinear optical microscopic method.

20.
Sci Adv ; 8(1): eabj8030, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34985953

RESUMO

Polar textures have attracted substantial attention in recent years as a promising analog to spin-based textures in ferromagnets. Here, using optical second-harmonic generation­based circular dichroism, we demonstrate deterministic and reversible control of chirality over mesoscale regions in ferroelectric vortices using an applied electric field. The microscopic origins of the chirality, the pathway during the switching, and the mechanism for electric field control are described theoretically via phase-field modeling and second-principles simulations, and experimentally by examination of the microscopic response of the vortices under an applied field. The emergence of chirality from the combination of nonchiral materials and subsequent control of the handedness with an electric field has far-reaching implications for new electronics based on chirality as a field-controllable order parameter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA