Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(37): e202400820, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38684451

RESUMO

Photoacids and bases allow remote control over pH in reaction solutions, which is of fundamental importance to an array of applications. Herein, we determine the wavelength-by-wavelength resolved photoreactivity of triarylsulfonium hexafluorophosphate salts as a representative photoacid generator and p-(benzoyl)benzyl triethylammonium tetraphenylborate as a photobase generator, constructing a wavelength-resolved photochemical action plot for each of the compounds. We monitor the pH change of the solution on-line within the cavity of the laser vial and demonstrate a marked mismatch between the absorption spectrum of the photoacid and base with the photochemical action plot, unveiling reactivity at very low absorptivities. Our findings are of critical importance for the use of photoacids and bases, unambiguously demonstrating that absorption is no guide to chemical reactivity with critical consequences for the wavelength employed in applications of photoacids and bases.

2.
Chemistry ; 30(23): e202304174, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38267371

RESUMO

Photochemical action plots are a powerful tool for mapping photochemical reaction outcomes wavelength-by-wavelength. Typically, they map either the depletion of a reactant or the formation of a specific product as a function of wavelength. Herein, we exploit action plots to simultaneously map the formation of several photochemical products from a single chromophore. We demonstrate that the wavelength-resolved mapping of two reaction products formed during the irradiation of a chalcone species not only shows wavelength dependence - exhibiting the typical strong red-shift of the photochemical reactivity compared to the absorbance spectrum of the chromophore - but also a strong wavelength selectivity with remarkably different product distributions resulting from different irradiation wavelengths.

3.
Angew Chem Int Ed Engl ; 63(26): e202405582, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38640085

RESUMO

Precision-engineered light-triggered hydrogels are important for a diversity of applications. However, fields such as biomaterials require wavelength outside the harsh UV regime to prevent photodamage, typically requiring chromophores with extended π-conjugation that suffer from poor water solubility. Herein, we demonstrate how cyclodextrins can be used as auxiliary agents to not only solubilize such chromophores, but even to preorganize them in a 2 : 2 host-guest inclusion complex to facilitate photodimerization. We apply our concept to styrylpyrene-end-functionalized star-shaped polyethylene glycols (sPEGs). We initially unravel details of the host-guest inclusion complex using spectroscopy and mass spectrometry to give clear evidence of a 2 : 2 complex formation. Subsequently, we show that the resultant supramolecularly linked hydrogels conform to theories of supramolecular quasi-ideal model networks, and derive details on their association dynamics using in-depth rheological measurements and kinetic models. By comparing sPEGs of different arm length, we further elucidate the model network topology and the accessible mechanical property space. The photo-mediated dimerization proceeds smoothly, allowing to transform the supramolecular model networks into covalent ones. We submit that our strategy opens avenues for executing hydrophobic photochemistry in aqueous environments with enhanced control over reactivity, hydrogel topology or programmable mechanical properties.

4.
Angew Chem Int Ed Engl ; 63(7): e202311734, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37852937

RESUMO

Over the last six decades folded polymer chains-so-called Single Chain Nanoparticles (SCNPs)-have evolved from the mere concept of intramolecularly crosslinked polymer chains to tailored nanoreactors, underpinned by a plethora of techniques and chemistries to tailor and analyze their morphology and function. These monomolecular polymer entities hold critical promise in a wide range of applications. Herein, we highlight the exciting progress that has been made in the field of catalytically active SCNPs in recent years.

5.
Angew Chem Int Ed Engl ; 63(4): e202315887, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37988197

RESUMO

Hydrazones-consisting of a dynamic imine bond and an acidic NH proton-have recently emerged as versatile photoswitches underpinned by their ability to form thermally bistable isomers, (Z) and (E), respectively. Herein, we introduce two photoresponsive homopolymers containing structurally different hydrazones as main-chain repeating units, synthesized via head-to-tail Acyclic Diene METathesis (ADMET) polymerization. Their key difference lies in the hydrazone design, specifically the location of the aliphatic arm connecting the rotor of the hydrazone photoswitch to the aliphatic polymer backbone. Critically, we demonstrate that their main photoresponsive property, i.e., their hydrodynamic volume, changes in opposite directions upon photoisomerization (λ=410 nm) in dilute solution. Further, the polymers-independent of the design of the individual hydrazone monomer-feature a photoswitchable glass transition temperature (Tg ) by close to 10 °C. The herein established design strategy allows to photochemically manipulate macromolecular properties by simple structural changes.

6.
J Am Chem Soc ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922417

RESUMO

Employing two colors of light to 3D print objects holds potential for accessing advanced printing modes, such as the generation of multi-material objects from a single print. Thus, dual-wavelength-driven photoreactive systems (reactions that require or utilize two wavelengths) and their exploitation as chemo-technological solutions for additive manufacturing technologies have experienced considerable development over the last few years. Such systems saw an increase in printing speeds, a decrease in resolution thresholds, and─perhaps most importantly─the actual generation of multi-material objects. However, the pace at which such reactive systems are developed is moderate and varies significantly depending on the fashion in which the two colors of light are employed. Herein, we address for the first time the varying logic conjugations of light-activated chemical compounds in dual-wavelength photochemical processes in a systematic manner and consider their implications from a photochemical point of view. To date, four dual-wavelength reaction types have been reported, termed synergistic (λ1 AND λ2), antagonistic (reversed λ1 AND λ2), orthogonal (λ1 OR λ2), and─most recently─cooperative (λ1 AND λ2 or λ1 OR λ2). The progress of their implementation in additive manufacturing is assessed individually, and their concurrent and individual chemical challenges are identified. These challenges need to be addressed for future dual-wavelength photochemical systems to progress multi-wavelength additive manufacturing technologies beyond their current limitations.

7.
J Am Chem Soc ; 145(27): 14748-14755, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37379099

RESUMO

Photoisomerization of chromophores usually shows significantly less efficiency in solid polymers than in solution as strong intermolecular interactions lock their conformation. Herein, we establish the impact of macromolecular architecture on the isomerization efficiency of main-chain-incorporated chromophores (i.e., α-bisimine) in both solution and the solid state. We demonstrate that branched architectures deliver the highest isomerization efficiency for the main-chain chromophore in the solid state─remarkably as high as 70% compared to solution. The macromolecular design principles established herein for efficient solid-state photoisomerization can serve as a blueprint for enhancing the solid-state isomerization efficiency for other polymer systems, such as those based on azobenzenes.

8.
Macromol Rapid Commun ; 44(12): e2300015, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37059597

RESUMO

Thermally activated delayed fluorescent (TADF) emitters have become the leading emissive materials for highly efficient organic light-emitting diodes (OLEDs). The deposition of these materials in scalable and cost-effective ways is paramount when looking toward the future of OLED applications. Herein, a simple OLED with fully solution-processed organic layers is introduced, where the TADF emissive layer is ink-jet printed. The TADF polymer has electron and hole conductive side chains, simplifying the fabrication process by removing the need for additional host materials. The OLED has a peak emission of 502 nm and a maximum luminance of close to 9600 cd m-2 . The self-hosted TADF polymer is also demonstrated in a flexible OLED, reaching a maximum luminance of over 2000 cd m-2 . These results demonstrate the potential applications of this self-hosted TADF polymer in flexible ink-jet printed OLEDs and, therefore, for a more scalable fabrication process.


Assuntos
Corantes , Tinta , Condutividade Elétrica , Elétrons , Polímeros
9.
Angew Chem Int Ed Engl ; 62(36): e202307535, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37358799

RESUMO

Independently addressing photoreactive sites within one molecule with two colours of light is a formidable challenge. Here, we combine two sequence independent λ-orthogonal chromophores in one heterotelechelic dilinker molecule, to exploit their disparate reactivity utilizing the same reaction partner, a maleimide-containing polymer. We demonstrate that polymer network formation only proceeds if two colours of light are employed. Upon single colour irradiation, linker-decorated post-functionalized polymers are generated at either wavelength and in either sequence. Network formation, however, is only achieved by sequential or simultaneous two colour irradiation. The herein introduced photoreactive system demonstrates the power of wavelength orthogonal chemistry in macromolecular synthesis.

10.
Angew Chem Int Ed Engl ; 62(40): e202310274, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37551836

RESUMO

Exploiting the optimum wavelength of reactivity for efficient photochemical reactions has been well-established based on the development of photochemical action plots. We herein demonstrate the power of such action plots by a remarkable example of the wavelength-resolved photochemistry of two triazolinedione (TAD) substrates, i.e., aliphatic and aromatic substituted, that exhibit near identical absorption spectra yet possess vastly disparate photoreactivity. We present our findings in carefully recorded action plots, from which reaction selectivity is identified. The profound difference in photoreactivity is exploited by designing a 'hybrid' bisfunctional TAD molecule, enabling the formation of a dual-gated reaction manifold that demonstrates the exceptional and site-selective (photo)chemical behavior of both TAD substrates within a single small molecule.

11.
Angew Chem Int Ed Engl ; 62(37): e202309259, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37485591

RESUMO

We introduce a class of single-chain nanoparticles (SCNPs) that respond to visible light (λmax =415 nm) with complete unfolding from their compact structure into linear chain analogues. The initial folding is achieved by a simple esterification reaction of the polymer backbone constituted of acrylic acid and polyethylene glycol carrying monomer units, introducing bimane moieties, which allow for the photochemical unfolding, reversing the ester-bond formation. The compaction and the light driven unfolding proceed cleanly and are readily followed by size exclusion chromatography (SEC) and diffusion ordered NMR spectroscopy (DOSY), monitoring the change in the hydrodynamic radius (RH ). Importantly, the folding reaction and the light-induced unfolding are reversible, supported by the high conversion of the photo cleavage. As the unfolding reaction occurs in aqueous systems, the system holds promise for controlling the unfolding of SCNPs in biological environments.

12.
Angew Chem Int Ed Engl ; 62(23): e202302995, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36882373

RESUMO

We introduce a single-chain nanoparticle (SCNP) system capable of catalyzing the photooxidation of nonpolar alkenes up to three times more efficiently than an equivalent small-molecule photosensitizer at an identical concentration. Specifically, we construct a polymer chain constituted of poly(ethylene glycol) methyl ether methacrylate and glycidyl methacrylate which we compact via multifunctional thiol-epoxide ligation and functionalize with Rose Bengal (RB) in a one pot reaction, affording SCNPs with a hydrophilic shell and hydrophobic photocatalytic regions. Photooxidation of the internal alkene in oleic acid proceeds under green light. RB confined within the SCNP is three times more effective for nonpolar alkenes than free RB in solution, which we hypothesize is due to the spatial proximity of the photosensitizing units to the substrate in the hydrophobic region. Our approach demonstrates that SCNP based catalysts can afford enhanced photocatalysis via confinement effects in a homogeneous reaction environment.

13.
J Am Chem Soc ; 144(3): 1094-1098, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35007082

RESUMO

The careful mapping of photoinduced reversible-deactivation radical polymerizations (RDRP) is a prerequisite for their applications in soft matter materials design. Here, we probe the wavelength-dependent behavior of photochemically induced atom transfer radical polymerization (ATRP) using nanosecond pulsed-laser polymerization (PLP). The photochemical reactivities at identical photon fluxes of methyl acrylate in terms of conversion, number-average molecular weight, and dispersity of the resulting polymers are mapped against the absorption spectrum of the copper(II) catalyst in the range of 305-550 nm. We observe a red shift of the action spectrum relative to the absorption spectrum of the copper(II) catalyst. Both the number-average molecular weight and the dispersity show a wavelength dependence, while the molecular weight and conversion remain linearly correlated. The reported data allow the judicious selection of optimum wavelengths for photoATRP.

14.
J Am Chem Soc ; 144(14): 6343-6348, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35364816

RESUMO

We introduce a new photochemically active compound, i.e., pyridinepyrene (PyPy), entailing a pH-active moiety that effects a significant halochromic shift into orange-light (λ = 590 nm) activatable photoreactivity while concomitantly exerting control over its reaction pathways. With blue light (λ = 450 nm) in neutral to basic pH, a [2 + 2] photocycloaddition can be triggered to form a cyclobutene ring in a reversible fashion. If the pH is decreased to acidic conditions, resulting in a halochromic absorption shift, photocycloaddition on the small-molecule level is blocked due to repulsive interactions and exclusive trans-cis isomerization is observed. Through implementation of PyPy into the confined environment of a single-chain nanoparticle (SCNP) design, one can overcome the repulsive forces and exploit the halochromic shift for orange light (λ = 590 nm)-induced cycloaddition and formation of macromolecular three-dimensional (3D) architectures.


Assuntos
Citrus sinensis , Reação de Cicloadição , Concentração de Íons de Hidrogênio , Luz , Fotoquímica
15.
Nat Mater ; 20(10): 1422-1430, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34183809

RESUMO

The three-dimensional arrangement of natural and synthetic network materials determines their application range. Control over the real-time incorporation of each building block and functional group is desired to regulate the macroscopic properties of the material from the molecular level onwards. Here we report an approach combining kinetic Monte Carlo and molecular dynamics simulations that chemically and physically predicts the interactions between building blocks in time and in space for the entire formation process of three-dimensional networks. This framework takes into account variations in inter- and intramolecular chemical reactivity, diffusivity, segmental compositions, branch/network point locations and defects. From the kinetic and three-dimensional structural information gathered, we construct structure-property relationships based on molecular descriptors such as pore size or dangling chain distribution and differentiate ideal from non-ideal structural elements. We validate such relationships by synthesizing organosilica, epoxy-amine and Diels-Alder networks with tailored properties and functions, further demonstrating the broad applicability of the platform.

16.
Chemistry ; 28(25): e202104466, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35213069

RESUMO

The ability of light to remotely control the properties of soft matter materials in a dynamic fashion has fascinated material scientists and photochemists for decades. However, only recently has our ability to map photochemical reactivity in a finely wavelength resolved fashion allowed for different colors of light to independently control the material properties of polymer networks with high precision, driven by monochromatic irradiation enabling orthogonal reaction control. The current concept article highlights the progress in visible light-induced photochemistry and explores how it has enabled the design of polymer networks with dynamically adjustable properties. We will explore current applications ranging from dynamic hydrogel design to the light-driven adaptation of 3D printed structures on the macro- and micro-scale. While the alternation of mechanical properties via remote control is largely reality for soft matter materials, we herein propose the next frontiers for adaptive properties, including remote switching between conductive and non-conductive properties, hydrophobic and hydrophilic surfaces, fluorescent or non-fluorescent, and cell adhesive vs. cell repellent properties.


Assuntos
Hidrogéis , Polímeros , Adesivos , Condutividade Elétrica , Hidrogéis/química , Fotoquímica , Polímeros/química
17.
J Org Chem ; 87(14): 9296-9300, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35749632

RESUMO

We herein report the first light-driven selective monoderivatization (desymmetrization) of two chemically equivalent carbonyl groups in a single chromophore. By comparing of four symmetric regioisomers, featuring two equivalent ortho-methylbenzaldehyde units, we identify dimethyltherephtalaldehydes (DMTAs) which can be activated in a dual wavelength-selective fashion. Under visible light and UV-light irradiation, DMTAs undergo two consecutive Diels-Alder reactions exhibiting near-quantitative endo-selectivity (>99%) and provide excellent yields (96-98%). The influence of the regioisomerism of the dialdehydes on their photochemical behavior is profound, evidenced by an in-depth investigation of their photochemical performance. We exemplify the capability of the photosystems via the synthesis of complex Diels-Alder adducts with various dienophiles, including alkynes.

18.
Angew Chem Int Ed Engl ; 61(15): e202113076, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35029002

RESUMO

Herein, we introduce the wavelength-orthogonal crosslinking of hydrogel networks using two red-shifted chromophores, i.e. acrylpyerene (AP, λactivation =410-490 nm) and styrylpyrido[2,3-b]pyrazine (SPP, λactivation =400-550 nm), able to undergo [2+2] photocycloaddition in the visible-light regime. The photoreactivity of the SPP moiety is pH-dependent, whereby an acidic environment inhibits the cycloaddition. By employing a spiropyran-based photoacid generator with suitable absorption wavelength, we are able to restrict the activation wavelength of the SPP moiety to the green light region (λactivation =520-550 nm), enabling wavelength-orthogonal activation of the AP group. Our wavelength-orthogonal photochemical system was successfully applied in the design of hydrogels whose stiffness can be tuned independently by either green or blue light.

19.
Angew Chem Int Ed Engl ; 61(42): e202209177, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35945906

RESUMO

We introduce a gold nanorod (AuNR) driven methodology to induce free radical polymerization in water with near infrared light (800 nm). The process exploits photothermal conversion in AuNR and subsequent heat transfer to a radical initiator (here azobisisobutyronitrile) for primary radical generation. A broad range of reaction conditions were investigated, demonstrating control over molecular weight and reaction conversion of dimethylacrylamide polymers, using nuclear magnetic resonance spectroscopy. We underpin our experimental data with finite element simulation of the spatio-temporal temperature profile surrounding the AuNR directly after femtosecond laser pulse excitation. Critically, we evidence that polymerization can be induced through biological tissues given the enhanced penetration depth of the near infrared light. We submit that the presented initiation mechanism in aqueous systems holds promise for radical polymerization in biological environments, including cells.


Assuntos
Nanotubos , Água , Ouro/química , Luz , Nanotubos/química , Polimerização , Polímeros
20.
J Am Chem Soc ; 143(42): 17769-17777, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34662103

RESUMO

Reversible addition-fragmentation chain transfer (RAFT) polymerization is one of the most powerful reversible deactivation radical polymerization (RDRP) processes. Rate retardation is prevalent in RAFT and occurs when polymerization rates deviate from ideal conventional radical polymerization kinetics. Herein, we explore beyond what was initially thought to be the culprit of rate retardation: dithiobenzoate chain transfer agents (CTA) with more active monomers (MAMs). Remarkably, polymerizations showed that rate retardation occurs in systems encompassing the use of trithiocarbonates and xanthates CTAs with varying monomeric activities. Both the simple slow fragmentation and intermediate radical termination models show that retardation of all these systems can be described by using a single relationship for a variety of monomer reactivity and CTAs, suggesting rate retardation is a universal phenomenon of varying severity, independent of CTA composition and monomeric activity level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA