Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 556(7700): 231-234, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618821

RESUMO

Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century 1-7 are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch 6 . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying 8, 9 , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.


Assuntos
Altitude , Biodiversidade , Mapeamento Geográfico , Aquecimento Global/estatística & dados numéricos , Plantas/classificação , Europa (Continente) , História do Século XX , História do Século XXI , Temperatura
2.
Ecol Lett ; 25(2): 466-482, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34866301

RESUMO

Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.


Assuntos
Biodiversidade , Pradaria , Ecossistema , Florestas , Plantas
3.
Front Plant Sci ; 15: 1303750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390295

RESUMO

Lowland meadows represent aboveground and belowground biodiversity reservoirs in intensive agricultural areas, improving water retention and filtration, ensuring forage production, contrasting erosion and contributing to soil fertility and carbon sequestration. Besides such major ecosystem services, the presence of functionally different plant species improves forage quality, nutritional value and productivity, also limiting the establishment of weeds and alien species. Here, we tested the effectiveness of a commercial seed mixture in restoring a lowland mixed meadow in the presence or absence of inoculation with arbuscular mycorrhizal (AM) fungi and biostimulation of symbiosis development with the addition of short chain chito-oligosaccharides (CO). Plant community composition, phenology and productivity were regularly monitored alongside AM colonization in control, inoculated and CO-treated inoculated plots. Our analyses revealed that the CO treatment accelerated symbiosis development significantly increasing root colonization by AM fungi. Moreover, the combination of AM fungal inoculation and CO treatment improved plant species evenness and productivity with more balanced composition in forage species. Altogether, our study presented a successful and scalable strategy for the reintroduction of mixed meadows as valuable sources of forage biomass; demonstrated the positive impact of CO treatment on AM development in an agronomic context, extending previous observations developed under controlled laboratory conditions and leading the way to the application in sustainable agricultural practices.

4.
Sci Total Environ ; 877: 162993, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948323

RESUMO

Invasive alien species are among the main global drivers of biodiversity loss posing major challenges to nature conservation and to managers of protected areas. The present study applied a methodological framework that combined invasive Species Distribution Models, based on propagule pressure, abiotic and biotic factors for 14 invasive alien plants of Union concern in Italy, with the local interpretable model-agnostic explanation analysis aiming to map, evaluate and analyse the risk of plant invasions across the country, inside and outside the network of protected areas. Using a hierarchical invasive Species Distribution Model, we explored the combined effect of propagule pressure, abiotic and biotic factors on shaping invasive alien plant occurrence across three biogeographic regions (Alpine, Continental, and Mediterranean) and realms (terrestrial and aquatic) in Italy. We disentangled the role of propagule pressure, abiotic and biotic factors on invasive alien plant distribution and projected invasion risk maps. We compared the risk posed by invasive alien plants inside and outside protected areas. Invasive alien plant distribution varied across biogeographic regions and realms and unevenly threatens protected areas. As an alien's occurrence and risk on a national scale are linked with abiotic factors followed by propagule pressure, their local distribution in protected areas is shaped by propagule pressure and biotic filters. The proposed modelling framework for the assessment of the risk posed by invasive alien plants across spatial scales and under different protection regimes represents an attempt to fill the gap between theory and practice in conservation planning helping to identify scale, site, and species-specific priorities of management, monitoring and control actions. Based on solid theory and on free geographic information, it has great potential for application to wider networks of protected areas in the world and to any invasive alien plant, aiding improved management strategies claimed by the environmental legislation and national and global strategies.


Assuntos
Biodiversidade , Ecossistema , Plantas , Espécies Introduzidas , Especificidade da Espécie
5.
Sci Rep ; 10(1): 11654, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669567

RESUMO

The proliferation of ski run construction is a worldwide trend. The machine-grading of slopes involved during ski run construction changes the physical, chemical and biological properties of the soil, having significant long-term ecological impact on the environment. Establishing and developing plant communities in these affected areas is crucial in rehabilitating the biotic and abiotic soil environment, while also improving slope stability and reducing the risk of natural hazards. This study evaluates changes in plant-soil properties and the long-term effects of machine-grading and subsequent restoration of ski runs so as to contribute to formulating the best practices in future ski run constructions. Study plots were established in 2000 and re-surveyed in 2017 on ski runs, which had been machine-graded and hydroseeded in the 1990s. Vegetation, root trait and soil surveys were carried out on ski run plots and compared to paired, undisturbed control sites off the ski runs. Plant cover remained unchanged on the ski-runs over time but plant richness and diversity considerably increased, reaching similar levels to undisturbed vegetation. Plant composition moved towards more semi-natural stages, showing a reduction in seeded plants with a comparable increase in the cover of colonizing native species. Root trait results were site-specific showing great variations between the mid and long-term after-effects of machine-grading and revegetation when compared to undisturbed sites. Under long-term management, the soil pH was still higher and the organic C content still lower in the ski runs than in the undisturbed sites, as the aggregate stability. The standard actions applied (machine-grading, storage and re-use of topsoil, hydroseeding of commercial seed mixtures, application of manure soon after seeding and low-intensity grazing) allowed the ecosystem to partially recover in three decades, and even if the soil has still a lower chemical and physical fertility than the undisturbed sites, the plant species composition reveals a satisfactory degree of renaturalization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA