Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Rheumatology (Oxford) ; 63(3): 608-618, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788083

RESUMO

Local and systemic low-grade inflammation, mainly involving the innate immune system, plays an important role in the development of OA. A receptor playing a key role in initiation of this inflammation is the pattern-recognition receptor Toll-like receptor 4 (TLR4). In the joint, various ligands for TLR4, many of which are damage-associated molecular patterns (DAMPs), are present that can activate TLR4 signalling. This leads to the production of pro-inflammatory and catabolic mediators that cause joint damage. In this narrative review, we will first discuss the involvement of TLR4 ligands and signalling in OA. Furthermore, we will provide an overview of methods for inhibit, TLR4 signalling by RNA interference, neutralizing anti-TLR4 antibodies, small molecules and inhibitors targeting the TLR4 co-receptor MD2. Finally, we will focus on possible applications and challenges of these strategies in the dampening of inflammation in OA.


Assuntos
Osteoartrite , Receptor 4 Toll-Like , Humanos , Inflamação , Transdução de Sinais , Alarminas
2.
Biochim Biophys Acta Biomembr ; 1862(3): 183155, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846645

RESUMO

At concentrations exceeding 10 µM, arginine-rich cell-penetrating peptides (CPPs) trigger a rapid cytoplasmic import that involves activation of acid sphingomyelinase (ASMase). ASMase activation occurs through a variety of stress signals and has also been related to the reorganization of membrane microdomains during entry of pathogens. However, in none of these cases has the initial trigger for ASMase activation been established on a molecular level. We here show that rapid cytosolic CPP import depends upon an increase in intracellular calcium, likely caused by modulation of the Orai1 calcium channel. At low peptide concentration, cytoplasmic import could be induced by thapsigargin, a known activator of Orai1. Compounds known to block Orai1 inhibited rapid uptake. Peptide-mediated modulation of Orai1 involved cell surface sialic acids as inhibition of sialylation as well as chemical blocking of sialic acids reduced rapid cytoplasmic uptake, which could be reconstituted by thapsigargin. These results establish a link between the known propensity of arginine-rich CPPs to interact with the glycocalyx and calcium influx as the initial step triggering direct cytosolic peptide uptake.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Proteína ORAI1/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cátions/metabolismo , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/fisiologia , Citosol , Células HeLa , Humanos , Proteína ORAI1/fisiologia , Esfingomielina Fosfodiesterase/metabolismo , Tapsigargina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA