Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Rev Cancer ; 1868(2): 372-393, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28669749

RESUMO

Extracellular vesicle (EV) production is a universal feature of metazoan cells as well as prokaryotes (bMVs - bacterial microvesicles). They are small vesicles with phospholipid membrane carrying proteins, DNA and different classes of RNAs and are heavily involved in intercellular communication acting as vectors of information to target cells. For the last decade, the interest in EV research has exponentially increased though thorough studies of their roles in various pathologies that was not previously possible due to technical limitations. This review focuses on research evaluating the role of EV production in gastrointestinal (GI) cancer development in conjunction with GI microbiota and inflammatory diseases. We also discuss recent studies on the promising role of EVs and their content as biomarkers for early diagnosis of GI cancers. The bMVs have also been implicated in the pathogenesis of GI chronic inflammatory diseases, however, possible role of bMVs in tumorigenesis remains underestimated. We propose that EVs from eukaryotic cells as well as from different microbial, fungi, parasitic species and edible plants in GI tract act as mediators of intracellular and inter-species communication, particularly facilitating tumor cell survival and multi-drug resistance. In conclusion, we suggest that matching sequences from EV proteomes (available from public databases) with known protein sequences of microbiome gut bacteria will be useful in identification of antigen mimicry between evolutionary conservative protein sequences. Using this approach we identified Bacteroides spp. pseudokinase with activation loop and homology to PDGFRα, providing a proof-of-concept strategy. We speculate that existence of microbial pseudokinase that 'mimics' PDGFRα may be related to PDGFRα and Bacteroides spp. roles in colorectal carcinogenesis that require further investigation.


Assuntos
Vesículas Extracelulares/fisiologia , Microbioma Gastrointestinal/fisiologia , Neoplasias Gastrointestinais/etiologia , Animais , Comunicação Celular , Humanos , Mimetismo Molecular , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/fisiologia
2.
J Neurosci Res ; 97(2): 162-184, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30367726

RESUMO

In contrast to peripheral macrophages, microglia in the central nervous system (CNS) exhibit a specific deactivated phenotype; however, it is not clear how this phenotype is maintained. Two alternative hypotheses were postulated recently: (a) microglia differ from peripheral macrophages being derived from the yolk sac (YS), whereas peripheral macrophages originate from bone marrow (BM); (b) microglia acquire a specific phenotype under the influence of the CNS microenvironment. We have previously shown that microglia express miR-124, which was also induced in BM-derived macrophages co-cultured with a neurons. We here investigated the possibility of horizontal transfer of the neuron-specific microRNAs miR-124 and miR-9 from primary neurons to microglia/macrophages. We found that after incubation with neuronal conditioned media (NCM), macrophages downregulated activation markers MHC class II and CD45. Neither cultured adult microglia nor YS- and BM-derived macrophages demonstrated intrinsic levels of miR-124 expression. However, after incubation with NCM, miR-124 was induced in both YS- and BM-derived macrophages. Biochemical analysis demonstrated that the NCM contained miR-124 and miR-9 in complex with small proteins, large high-density lipoproteins (HDLs), and exosomes. MiR-124 and miR-9 were promptly released from neurons, and this process was inhibited by tetrodotoxin, indicating an important role of neuronal electric activity in secretion of these microRNAs. Incubation of macrophages with exogenous miR-124 resulted in efficient translocation of miR-124 into the cytoplasm. This study demonstrates an important role of neuronal miRNAs in communication of neurons with microglia, which favors the hypothesis that microglia acquire a specific phenotype under the influence of the CNS microenvironment.


Assuntos
Comunicação Celular/fisiologia , MicroRNAs/fisiologia , Microglia/fisiologia , Neurônios/fisiologia , Animais , Astrócitos/metabolismo , Astrócitos/fisiologia , Células Cultivadas , Exossomos/metabolismo , Antígenos Comuns de Leucócito , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Microglia/metabolismo , Neurônios/metabolismo
3.
Brain Behav Immun ; 74: 7-27, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30217533

RESUMO

It is generally accepted that inflammation within the CNS contributes to neurodegeneration after traumatic brain injury (TBI), but it is not clear how inflammation is initiated in the absence of infection and whether this neuroinflammation is predominantly beneficial or detrimental. We have previously found that brain-enriched glycosphingolipids within neuronal lipid rafts (NLR) induced platelet degranulation and secretion of neurotransmitters and pro-inflammatory factors. In the present study, we compared TBI-induced inflammation and neurodegeneration in wild-type vs. St3gal5 deficient (ST3-/-) mice that lack major CNS-specific glycosphingolipids. After TBI, microglial activation and CNS macrophage infiltration were substantially reduced in ST3-/- animals. However, ST3-/- mice had a larger area of CNS damage with marked neuronal/axonal loss. The interaction of platelets with NLR stimulated neurite growth, increased the number of PSD95-positive dendritic spines, and intensified neuronal activity. Adoptive transfer and blocking experiments provide further that platelet-derived serotonin and platelet activating factor plays a key role in the regulation of sterile neuroinflammation, hemorrhage and neuronal plasticity after TBI.


Assuntos
Plaquetas/fisiologia , Neuroimunomodulação/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Plaquetas/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Modelos Animais de Doenças , Encefalite/metabolismo , Feminino , Glicolipídeos/metabolismo , Glicolipídeos/fisiologia , Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neurônios/fisiologia , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/fisiologia , Serotonina/metabolismo
4.
Methods ; 112: 105-123, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27392934

RESUMO

Apoptosis is a multistep process of programmed cell death where different morphological and molecular events occur simultaneously and/or consequently. Recent progress in programmed cell death analysis uncovered large heterogeneity in response of individual cells to the apoptotic stimuli. Analysis of the complex and dynamic process of apoptosis requires a capacity to quantitate multiparametric data obtained from multicolor labeling and/or fluorescent reporters of live cells in conjunction with morphological analysis. Modern methods of multiparametric apoptosis study include but are not limited to fluorescent microscopy, flow cytometry and imaging flow cytometry. In the current review we discuss the image-based evaluation of apoptosis on the single-cell and population level by imaging flow cytometry in parallel with other techniques. The advantage of imaging flow cytometry is its ability to interrogate multiparametric morphometric and fluorescence quantitative data in statistically robust manner. Here we describe the current status and future perspectives of this emerging field, as well as some challenges and limitations. We also highlight a number of assays and multicolor labeling probes, utilizing both microscopy and different variants of imaging cytometry, including commonly based assays and novel developments in the field.


Assuntos
Apoptose/genética , Citometria de Fluxo/métodos , Citometria por Imagem/métodos , Software , Coloração e Rotulagem/métodos , Algoritmos , Apoptose/efeitos dos fármacos , Carbocianinas/química , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Cicloeximida/farmacologia , Etoposídeo/farmacologia , Citometria de Fluxo/instrumentação , Corantes Fluorescentes/química , Regulação da Expressão Gênica , Células HeLa , Humanos , Citometria por Imagem/instrumentação , Células Jurkat , Compostos Organometálicos/química
5.
Methods ; 112: 188-200, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27223402

RESUMO

This review highlights the concepts and instrumentation of imaging flow cytometry technology and in particular its use for phytoplankton analysis. Imaging flow cytometry, a hybrid technology combining speed and statistical capabilities of flow cytometry with imaging features of microscopy, is rapidly advancing as a cell imaging platform that overcomes many of the limitations of current techniques and contributed significantly to the advancement of phytoplankton analysis in recent years. This review presents the various instrumentation relevant to the field and currently used for assessment of complex phytoplankton communities' composition and abundance, size structure determination, biovolume estimation, detection of harmful algal bloom species, evaluation of viability and metabolic activity and other applications. Also we present our data on viability and metabolic assessment of Aphanizomenon sp. cyanobacteria using Imagestream X Mark II imaging cytometer. Herein, we highlight the immense potential of imaging flow cytometry for microalgal research, but also discuss limitations and future developments.


Assuntos
Cianobactérias/ultraestrutura , Citometria de Fluxo/métodos , Citometria por Imagem/métodos , Fitoplâncton/ultraestrutura , Clorofila/química , Cianobactérias/metabolismo , Fluoresceínas/química , Corantes Fluorescentes/química , Proliferação Nociva de Algas/fisiologia , Fitoplâncton/metabolismo , Coloração e Rotulagem/métodos
6.
Methods ; 112: 91-104, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27642004

RESUMO

Imaging flow cytometry has been applied to address questions in infection biology, in particular, infections induced by intracellular pathogens. This methodology, which utilizes specialized analytic software makes it possible to analyze hundreds of quantified features for hundreds of thousands of individual cellular or subcellular events in a single experiment. Imaging flow cytometry analysis of host cell-pathogen interaction can thus quantitatively addresses a variety of biological questions related to intracellular infection, including cell counting, internalization score, and subcellular patterns of co-localization. Here, we provide an overview of recent achievements in the use of fluorescently labeled prokaryotic or eukaryotic pathogens in human cellular infections in analysis of host-pathogen interactions. Specifically, we give examples of Imagestream-based analysis of cell lines infected with Toxoplasma gondii or Mycobacterium tuberculosis. Furthermore, we illustrate the capabilities of imaging flow cytometry using a combination of standard IDEAS™ software and the more recently developed Feature Finder algorithm, which is capable of identifying statistically significant differences between researcher-defined image galleries. We argue that the combination of imaging flow cytometry with these software platforms provides a powerful new approach to understanding host control of intracellular pathogens.


Assuntos
Citometria de Fluxo/métodos , Interações Hospedeiro-Patógeno , Citometria por Imagem/métodos , Mycobacterium tuberculosis/metabolismo , Software , Toxoplasma/metabolismo , Algoritmos , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Citometria de Fluxo/instrumentação , Corantes Fluorescentes/química , Regulação da Expressão Gênica , Genes Reporter , Humanos , Citometria por Imagem/instrumentação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mycobacterium tuberculosis/ultraestrutura , Fagocitose , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Coloração e Rotulagem/métodos , Células THP-1 , Toxoplasma/ultraestrutura , Proteína Vermelha Fluorescente
7.
Biochim Biophys Acta ; 1836(1): 105-22, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23481260

RESUMO

Increasing evidence of intratumor heterogeneity and its augmentation due to selective pressure of microenvironment and recent achievements in cancer therapeutics lead to the need to investigate and track the tumor subclonal structure. Cell sorting of heterogeneous subpopulations of tumor and tumor-associated cells has been a long established strategy in cancer research. Advancement in lasers, computer technology and optics has led to a new generation of flow cytometers and cell sorters capable of high-speed processing of single cell suspensions. Over the last several years cell sorting was used in combination with molecular biological methods, imaging and proteomics to characterize primary and metastatic cancer cell populations, minimal residual disease and single tumor cells. It was the principal method for identification and characterization of cancer stem cells. Analysis of single cancer cells may improve early detection of tumors, monitoring of circulating tumor cells, evaluation of intratumor heterogeneity and chemotherapeutic treatments. The aim of this review is to provide an overview of major cell sorting applications and approaches with new prospective developments such as microfluidics and microchip technologies.


Assuntos
Biomarcadores Tumorais , Pesquisa Biomédica , Separação Celular/métodos , Heterogeneidade Genética , Neoplasias/patologia , Animais , Citometria de Fluxo , Humanos , Análise em Microsséries , Neoplasias/terapia
8.
Front Vet Sci ; 11: 1371586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721151

RESUMO

Cryopreservation of sperm is an essential technique in assisted reproduction in cattle. The objective of the study was to systematically review and synthesize the literature on bull semen quality evaluation based on the comparison of morphological and metabolic parameters of cryopreserved bovine spermatozoa such as DNA integrity, mitochondrial status, plasma membrane alterations, total motility, and morphology (% of abnormal cells). The electronic databases PubMed, Web of Sciences, Scopus, and Google Scholar were searched up to December 2023. Studies and references were included if they reported the following parameters: DNA integrity, mitochondrial status, plasma membrane alterations, total motility, and morphological aberrations (% of abnormal cells) for conventional cryopreserved bovine spermatozoa. After an electronic search, out of 1,526 original studies, only 40 were included in the meta-analysis. Standardized mean differences (SMD) with 95% confidence intervals were estimated for the chosen studies, and a meta-analysis was performed using a random effects model. The tau-squared (tau2) and inconsistency index (I2) quantified heterogeneity among different studies. The regression analysis for the evaluated parameters showed a positive correlation between mitochondrial membrane potential (MMP), total motility, and abnormal morphology and a negative correlation between DNA fragmentation index (DFI) and total motility and MMP. Moreover, subgroup analysis demonstrated similar associations for dairy and non-dairy bull breeds, albeit with lower I2 values. The presence of publication bias was confirmed by Egger's test, except for the MMP parameter. A multi-parametric analysis of morphological and metabolic parameters can address the existing limitations of cryopreserved bovine spermatozoa quality assessment. Combining imaging flow cytometry (IFC) with standardization of sperm pre-processing and optimization of the experimental protocols may help to differentiate sperm from cellular debris and cytoplasmic droplets of similar size and alleviate limitations demonstrated by conventional sperm analysis.

9.
BMC Cell Biol ; 14: 23, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23607880

RESUMO

BACKGROUND: The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. RESULTS: MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. CONCLUSIONS: Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes.


Assuntos
Doenças Autoimunes/fisiopatologia , Micropartículas Derivadas de Células/fisiologia , Inflamação/fisiopatologia , Neoplasias/fisiopatologia , Animais , Doenças Cardiovasculares/fisiopatologia , Doenças Transmissíveis/fisiopatologia , Modelos Animais de Doenças , Humanos
10.
Xenotransplantation ; 20(6): 469-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24289470

RESUMO

BACKGROUND: The JAK/STAT (Janus Tyrosine Kinase, Signal Transducers and Activators of Transcription) pathway is associated with cytokine or growth factor receptors and it is critical for growth control, developmental regulation and homeostasis. The use of porcine ocular cells as putative xenotransplants appears theoretically possible. The aim of this study was to investigate the response of various porcine ocular cells in vitro to human cytokines in regard to the activation of JAK-STAT signaling pathways. METHODS: Porcine lens epithelial cells, pigmented iris epithelial cells and pigmented ciliary body cells were used in this study. These cells were isolated from freshly enucleated porcine eyes by enzymatic digestion. Cultured cells between passages 3-8 were used in all experiments. Electromobility shift assay (EMSA), proliferation assay, immunofluorescence staining and flow cytometry were used to evaluate the JAK-STAT signaling pathway in these cells. RESULTS: JAK/STAT signaling pathways could be activated in porcine pigmented epithelial ciliary body cells, in pigmented iris epithelial cells and in lens epithelial cells in response to porcine and human interferons and cytokines. All cells showed very strong STAT1 activation upon stimulation with porcine interferon-gamma. Porcine ocular cells also respond to human cytokines; IFN-alpha induced strong activation of STAT1 in EMSA, flow cytometry and immunofluorescence experiments whereas activation of STAT3 was less strong in EMSA, but strong in flow cytometry and immunofluorescence. Human recombinant IL-6 activated STAT3 and human IL-4 activated STAT6. With the help of immunofluorescence assay and flow cytometry we observed nuclear localization of STAT proteins after activation of porcine ocular cells with cytokines and interferons. Human IFN-α had an inhibitory effect on porcine ocular cells in proliferation assays. CONCLUSION: Our study demonstrated that some types of human cytokines and interferon activate intracellular JAK-STAT signaling pathways in porcine ocular cells. We hypothesize that direct stimulation of the JAK-STAT pathway in porcine cells in response to human cytokines will lead to complications or failure, if pig-to-human ocular tissue xenotransplantation were to be carried out. For successful xenotransplantation among other obstacles there must be new approaches developed to regulate signaling pathways.


Assuntos
Citocinas/metabolismo , Olho/imunologia , Olho/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Sus scrofa/imunologia , Sus scrofa/metabolismo , Animais , Proliferação de Células , Corpo Ciliar/citologia , Corpo Ciliar/imunologia , Corpo Ciliar/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Olho/citologia , Feminino , Xenoenxertos , Humanos , Interferons/metabolismo , Iris/citologia , Iris/imunologia , Iris/metabolismo , Cristalino/citologia , Cristalino/imunologia , Cristalino/metabolismo , Masculino , Transdução de Sinais , Especificidade da Espécie
11.
Methods Mol Biol ; 2635: 3-22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37074654

RESUMO

Spectral flow cytometry is a new technology that enables measurements of fluorescent spectra and light scattering properties in diverse cellular populations with high precision. Modern instruments allow simultaneous determination of up to 40+ fluorescent dyes with heavily overlapping emission spectra, discrimination of autofluorescent signals in the stained specimens, and detailed analysis of diverse autofluorescence of different cells-from mammalian to chlorophyll-containing cells like cyanobacteria. In this paper, we review the history, compare modern conventional and spectral flow cytometers, and discuss several applications of spectral flow cytometry.


Assuntos
Diagnóstico por Imagem , Corantes Fluorescentes , Animais , Citometria de Fluxo/métodos , Mamíferos
12.
Methods Mol Biol ; 2635: 23-40, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37074655

RESUMO

Fluorescence methods are widely used for the study of marine and freshwater phytoplankton communities. However, the identification of different microalgae populations by the analysis of autofluorescence signals remains a challenge. Addressing the issue, we developed a novel approach using the flexibility of spectral flow cytometry analysis (SFC) and generating a matrix of virtual filters (VF) which allowed thorough examination of autofluorescence spectra. Using this matrix, different spectral emission regions of algae species were analyzed, and five major algal taxa were discriminated. These results were further applied for tracing particular microalgae taxa in the complex mixtures of laboratory and environmental algal populations. An integrated analysis of single algal events combined with unique spectral emission fingerprints and light scattering parameters of microalgae can be used to differentiate major microalgal taxa. We propose a protocol for the quantitative assessment of heterogenous phytoplankton communities at the single-cell level and monitoring of phytoplankton bloom detection using a virtual filtering approach on a spectral flow cytometer (SFC-VF).


Assuntos
Microalgas , Citometria de Fluxo/métodos , Fitoplâncton , Água Doce , Coloração e Rotulagem
13.
Methods Mol Biol ; 2635: 87-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37074658

RESUMO

Multi-nuclearity is a common feature for cells in different cancers. Also, analysis of multi-nuclearity in cultured cells is widely used for evaluating the toxicity of different drugs. Multi-nuclear cells in cancer and under drug treatments form from aberrations in cell division and/or cytokinesis. These cells are a hallmark of cancer progression, and the abundance of multi-nucleated cells often correlates with poor prognosis.The use of standard bright field or fluorescent microscopy to analyze multi-nuclearity at the quantitative level is laborious and can suffer from user bias. Automated slide-scanning microscopy can eliminate scorer bias and improve data collection. However, this method has limitations, such as insufficient visibility of multiple nuclei in the cells attached to the substrate at low magnification.Since quantification of multi-nuclear cells using microscopic methods might be difficult, imaging flow cytometry (IFC) is a method of choice for this. We describe the experimental protocol for the preparation of the samples of multi-nucleated cells from the attached cultures and the algorithm for the analysis of these cells by IFC. Images of multi-nucleated cells obtained after mitotic arrest induced by taxol, as well as cells obtained after cytokinesis blockade by cytochalasin D treatment, can be acquired at a maximal resolution of IFC. We suggest two algorithms for the discrimination of single-nucleus and multi-nucleated cells. The advantages and disadvantages of IFC analysis of multi-nuclear cells in comparison with microscopy are discussed.


Assuntos
Núcleo Celular , Citocinese , Citometria de Fluxo/métodos , Divisão Celular , Núcleo Celular/ultraestrutura , Microscopia
14.
Methods Mol Biol ; 2635: 245-258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37074667

RESUMO

Microcystis is a globally known cyanobacterium causing potentially toxic blooms worldwide. Different morphospecies with specific morphological and physiological characters usually co-occur during blooming, and their quantification employing light microscopy can be time-consuming and problematic. A benchtop imaging flow cytometer (IFC) FlowCam (Yokogawa Fluid Imaging Technologies, USA) was used to identify and quantitate different Microcystis morphospecies from environmental samples. We describe here the FlowCam methodology for sample processing and analysis of five European morphospecies of Microcystis common to the temperate zone. The FlowCam technique allows detection of different Microcystis morphospecies providing objective qualitative and quantitative data for statistical analysis.


Assuntos
Cianobactérias , Microcystis , Citometria de Fluxo/métodos , Microscopia
15.
Toxins (Basel) ; 15(3)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36977124

RESUMO

Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases.


Assuntos
Diamino Aminoácidos , Cianobactérias , Doenças Neurodegenerativas , Animais , Humanos , Toxinas de Cianobactérias , Ecossistema , Diamino Aminoácidos/metabolismo , Água Doce/microbiologia , Aminoácidos/metabolismo , Cianobactérias/metabolismo , Mamíferos
16.
Artigo em Inglês | MEDLINE | ID: mdl-36767932

RESUMO

Background. Long COVID-19 symptoms appeared in many COVID-19 survivors. However, the prevalence and symptoms associated with long COVID-19 and its comorbidities have not been established. Methods. In total, 312 patients with long COVID-19 from 21 primary care centers were included in the study. At the six-month follow-up, their lung function was assessed by computerized tomography (CT) and spirometry, whereas cardiac function was assessed by elec-trocardiogram (ECG), Holter ECG, echocardiography, 24 h blood pressure monitoring, and a six-minute walk test (6MWT). Results. Of the 312 persons investigated, significantly higher sys-tolic and diastolic blood pressure, left ventricular hypertrophy, and elevated NT-proBNP were revealed in participants with hypertension or type 2 diabetes. Left ventricular diastolic dysfunc-tion was more frequently present in patients with hypertension. The most common registered CT abnormalities were fibrotic changes (83, 36.6%) and mediastinal lymphadenopathy (23, 10.1%). Among the tested biochemical parameters, three associations were found in long COVID-19 patients with hypertension but not diabetes: increased hemoglobin, fibrinogen, and ferritin. Nine patients had persisting IgM antibodies to SARS-CoV-2. Conclusions. We demon-strated a strong association between signs of cardiac dysfunction and lung fibrotic changes with comorbidities in a cohort of long COVID-19 subjects.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Hipertensão , Humanos , Síndrome de COVID-19 Pós-Aguda , Diabetes Mellitus Tipo 2/complicações , COVID-19/epidemiologia , COVID-19/complicações , SARS-CoV-2 , Hipertensão/complicações , Pulmão
17.
Malar J ; 11: 312, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22950515

RESUMO

BACKGROUND: Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP)-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP) labelling is complicated by autofluorescence (AF) of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. METHODS: Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. RESULTS: A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP) and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP), AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. DISCUSSION: Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis of parasite-infected samples with in the intention of gene-expression profiling and analysis. The approach outlined here results in substantially improved yield of GFP-expressing parasites, and requires decreased sorting time in comparison to standard methods. It is anticipated that this protocol will be useful for a wide range of applications involving rare events.


Assuntos
Citometria de Fluxo/métodos , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Animais , Animais Geneticamente Modificados , Eritrócitos/parasitologia , Filtração/instrumentação , Citometria de Fluxo/instrumentação , Citometria de Fluxo/estatística & dados numéricos , Proteínas de Fluorescência Verde/genética , Humanos , Malária Falciparum/parasitologia , Dispositivos Ópticos , Parasitemia/parasitologia , Proteínas Recombinantes/genética
18.
Proc Natl Acad Sci U S A ; 106(34): 14490-5, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19706534

RESUMO

Complement receptors (CRs) CD21 and CD35 form a coreceptor with CD19 and CD81 on murine B cells that when coligated with the B-cell receptor lowers the threshold of activation by several orders of magnitude. This intrinsic signaling role is thought to explain the impaired humoral immunity of mice bearing deficiency in CRs. However, CRs have additional roles on B cells independent of CD19, such as transport of C3-coated immune complexes and regulation of C4 and C3 convertase. To test whether association of CR with CD19 is necessary for their intrinsic activation-enhancing role, knockin mice expressing mutant receptors, Cr2(Delta/Deltagfp), that bind C3 ligands but do not signal through CD19 were constructed. We found that uncoupling of CR and CD19 significantly diminishes survival of germinal center B cells and secondary antibody titers. However, B memory is less impaired relative to mice bearing a complete deficiency in CRs on B cells. These findings confirm the importance of interaction of CR and CD19 for coreceptor activity in humoral immunity but identify a role for CR in B-cell memory independent of CD19.


Assuntos
Antígenos CD19/metabolismo , Linfócitos B/metabolismo , Receptores de Complemento 3d/metabolismo , Animais , Formação de Anticorpos/imunologia , Antígenos CD19/genética , Linfócitos B/citologia , Linfócitos B/imunologia , Medula Óssea/imunologia , Medula Óssea/metabolismo , Transplante de Medula Óssea , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Haptenos , Hemocianinas/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imunização , Memória Imunológica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Receptores de Complemento 3b/genética , Receptores de Complemento 3b/metabolismo , Receptores de Complemento 3d/genética , Baço/imunologia , Baço/metabolismo
19.
Microorganisms ; 10(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36014075

RESUMO

Regulated cell death (RCD) is central to the development, integrity, and functionality of multicellular organisms. In the last decade, evidence has accumulated that RCD is a universal phenomenon in all life domains. Cyanobacteria are of specific interest due to their importance in aquatic and terrestrial habitats and their role as primary producers in global nutrient cycling. Current knowledge on cyanobacterial RCD is based mainly on biochemical and morphological observations, often by methods directly transferred from vertebrate research and with limited understanding of the molecular genetic basis. However, the metabolism of different cyanobacteria groups relies on photosynthesis and nitrogen fixation, whereas mitochondria are the central executioner of cell death in vertebrates. Moreover, cyanobacteria chosen as biological models in RCD studies are mainly colonial or filamentous multicellular organisms. On the other hand, unicellular cyanobacteria have regulated programs of cellular survival (RCS) such as chlorosis and post-chlorosis resuscitation. The co-existence of different genetically regulated programs in cyanobacterial populations may have been a top engine in life diversification. Development of cyanobacteria-specific methods for identification and characterization of RCD and wider use of single-cell analysis combined with intelligent image-based cell sorting and metagenomics would shed more light on the underlying molecular mechanisms and help us to address the complex colonial interactions during these events. In this review, we focus on the functional implications of RCD in cyanobacterial communities.

20.
Microorganisms ; 10(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35889045

RESUMO

The climate-driven changes in temperature, in combination with high inputs of nutrients through anthropogenic activities, significantly affect phytoplankton communities in shallow lakes. This study aimed to assess the effect of nutrients on the community composition, size distribution, and diversity of phytoplankton at three contrasting temperature regimes in phosphorus (P)-enriched mesocosms and with different nitrogen (N) availability imitating eutrophic environments. We applied imaging flow cytometry (IFC) to evaluate complex phytoplankton communities changes, particularly size of planktonic cells, biomass, and phytoplankton composition. We found that N enrichment led to the shift in the dominance from the bloom-forming cyanobacteria to the mixed-type blooming by cyanobacteria and green algae. Moreover, the N enrichment stimulated phytoplankton size increase in the high-temperature regime and led to phytoplankton size decrease in lower temperatures. A combination of high temperature and N enrichment resulted in the lowest phytoplankton diversity. Together these findings demonstrate that the net effect of N and P pollution on phytoplankton communities depends on the temperature conditions. These implications are important for forecasting future climate change impacts on the world's shallow lake ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA