Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 20(8): 1142-1148, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33737728

RESUMO

As the features of microprocessors are miniaturized, low-dielectric-constant (low-k) materials are necessary to limit electronic crosstalk, charge build-up, and signal propagation delay. However, all known low-k dielectrics exhibit low thermal conductivities, which complicate heat dissipation in high-power-density chips. Two-dimensional (2D) covalent organic frameworks (COFs) combine immense permanent porosities, which lead to low dielectric permittivities, and periodic layered structures, which grant relatively high thermal conductivities. However, conventional synthetic routes produce 2D COFs that are unsuitable for the evaluation of these properties and integration into devices. Here, we report the fabrication of high-quality COF thin films, which enable thermoreflectance and impedance spectroscopy measurements. These measurements reveal that 2D COFs have high thermal conductivities (1 W m-1 K-1) with ultra-low dielectric permittivities (k = 1.6). These results show that oriented, layered 2D polymers are promising next-generation dielectric layers and that these molecularly precise materials offer tunable combinations of useful properties.

2.
J Am Chem Soc ; 140(46): 15601-15605, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30418022

RESUMO

Structural phase transitions run in families of crystalline solids. Perovskites, for example, feature a remarkable number of structural transformations that produce a wealth of exotic behaviors, including ferroelectricity, magnetoresistance, metal-insulator transitions and superconductivity. In superatomic crystals and other such materials assembled from programmable building blocks, phase transitions offer pathways to new properties that are both tunable and switchable. Here we describe [Co6Te8(PEt3)6][C70]2, a novel superatomic crystal with two separate phase transitions that drastically transform the collective material properties. A coupled structural-electronic phase transition triggers the emergence of a new electronic band in the fullerene sublattice of the crystal, increasing its electrical conductivity by 2 orders of magnitude, while narrowing its optical gap and increasing its spin density. Independently, an order-disorder transition transforms [Co6Te8(PEt3)6][C70]2 from a phonon crystal to a phonon glass. These results introduce a family of materials in which functional phase transformations may be manipulated by varying the constituent building blocks.

3.
Nanoscale Horiz ; 5(11): 1524-1529, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32909569

RESUMO

The thermal conductivity of fullerene-based superatomic crystals (SACs) is investigated using molecular dynamics simulations. The temperature-dependent predictions agree with the trends of previous measurements. The thermal conductivity behavior emerges as a result of the C60 molecule rotational dynamics and orientation, which are quantified using the root mean square displacements of the carbon atoms and the relative orientations of the C60s. At low temperatures, the C60s exhibit small rotations around equilibrium positions (i.e., librations). When the librating C60s are orientationally-ordered, as in the [C60] and [Co6Se8(PEt3)6][C60]2 SACs, thermal conductivity decreases with increasing temperature, as is typical for a crystal. When the librating C60s are orientationally-disordered, however, as in the [Co6Te8(PEt3)6][C60]2 SAC, thermal conductivity is lower and temperature independent, as is typical for an amorphous solid. At higher temperatures, where the C60s in all three SACs freely-rotate and are thus dynamically disordered, thermal conductivity is temperature independent. The abrupt changes driven by the C60 dynamics suggest that fullerene-based SACs can be designed to be thermal conductivity switches based on a variety of external stimuli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA