Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Biodivers ; 13(4): 395-402, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26938016

RESUMO

A strain of Lasiodiplodia mediterranea, a fungus associated with grapevine decline in Sicily, produced several metabolites in liquid medium. Two new dimeric γ-lactols, lasiolactols A and B (1 and 2), were characterized as (2S*,3S*,4R*,5R*,2'S*,3'S*,4'R*,5'R*)- and (2R*,3S*,4R*,5R*,2'R*,3'S*,4'R*,5'R*)-(5-(4-hydroxymethyl-3,5-dimethyl-tetrahydro-furan-2-yloxy)-2,4-dimethyl-tetrahydro-furan-3-yl]-methanols by IR, 1D- and 2D-NMR, and HR-ESI-MS. Other four metabolites were identified as botryosphaeriodiplodin, (5R)-5-hydroxylasiodiplodin, (-)-(1R,2R)-jasmonic acid, and (-)-(3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone (3 - 6, resp.). The absolute configuration (R) at hydroxylated secondary C-atom C(7) was also established for compound 3. The compounds 1 - 3, 5, and 6, tested for their phytotoxic activities to grapevine cv. Inzolia leaves at different concentrations (0.125, 0.25, 0.5, and 1 mg/ml) were phytotoxic and compound 5 showed the highest toxicity. All metabolites did not show in vitro antifungal activity against four plant pathogens.


Assuntos
Ascomicetos/metabolismo , Metanol/análogos & derivados , Vitis/microbiologia , Ascomicetos/patogenicidade , Metanol/química , Metanol/metabolismo , Espectrofotometria/métodos
2.
J Nat Prod ; 77(11): 2352-60, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25365236

RESUMO

In this study a new 20-nor-ent-pimarane, named diplopimarane, was isolated together with sphaeropsidins A (9) and C (10), and (+)-epiepoformin (11) from organic crude extracts of Diplodia quercivora, a recently described oak pathogen originally found on declining Quercus canariensis trees in Tunisia. Diplopimarane was characterized as (1S,2R)-2,8,8-trimethyl-2-vinyl-1,2,3,4,5,6,7,8-octahydrophenanthrene-1,9,10-triol by spectroscopic, X-ray, optical, and chemical methods. It exhibited a wide range of activities including remarkable phytotoxicity on nonhost plants such as tomato cuttings, moderate antifungal activity against important plant pathogens, and moderate zootoxicity against Artemia salina. Its derivatives (2-4 and 6) were also tested for their phytotoxic and zootoxic activities. All these derivatives proved to be active against A. salina at 200 µg/mL, while 2 and 6 were also active on tomato cuttings. The other secondary metabolites (9, 10, and 11) herein reported for D. quercivora exhibited phytotoxic, antifungal, and zootoxic activity. This is the first report on the secondary metabolites secreted in vitro by this oak pathogen that could be key components of its adaptative strategies.


Assuntos
Abietanos/isolamento & purificação , Antifúngicos/isolamento & purificação , Ascomicetos/química , Abietanos/química , Animais , Antifúngicos/química , Antifúngicos/farmacologia , Artemia/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Doenças das Plantas/microbiologia , Quercus/microbiologia , Tunísia
3.
J Nat Prod ; 75(10): 1785-91, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23046443

RESUMO

Two isolates of Neofusicoccum australe belonging to ITS haplotypes H4 and H1 and associated with grapevine cordon dieback and branch dieback of Phoenicean juniper, respectively, have been shown to produce in vitro structurally different secondary metabolites. From the strain BOT48 of N. australe (haplotype H4) a new cyclohexenone oxide, namely, cyclobotryoxide, was isolated together with 3-methylcatechol and tyrosol. Cyclobotryoxide was characterized as (1S,5R,6S)-5-hydroxy-3-methoxy-4-methyl-7-oxabicyclo[4.1.0]hept-3-en-2-one by spectroscopic, optical, and chemical methods. The strain BL24 (haplotype H1) produced tyrosol along with botryosphaerone D and (3S,4S)-3,4,8-trihydroxy-6-methoxy-3,4-dihydro-1(2H)-naphthalenone. The metabolites obtained from both strains were tested at four concentrations on leaves of grapevine cv. Cannonau, holm oak, and cork oak by the leaf puncture assay. Cyclobotryoxide proved to be the most phytotoxic compound. Tyrosol and cyclobotryoxide were also tested on detached grapevine leaves at concentrations of 0.25 and 0.5 mg/mL. Only cyclobotryoxide was found to be active in this bioassay.


Assuntos
Ascomicetos/química , Compostos Bicíclicos Heterocíclicos com Pontes/isolamento & purificação , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cicloexanonas/isolamento & purificação , Cicloexanonas/farmacologia , Juniperus/microbiologia , Micotoxinas/isolamento & purificação , Micotoxinas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Catecóis , Cicloexanonas/química , Estrutura Molecular , Micotoxinas/química , Ressonância Magnética Nuclear Biomolecular , Quercus/efeitos dos fármacos , Estereoisomerismo , Vitis/efeitos dos fármacos
4.
J Agric Food Chem ; 62(43): 10485-92, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25272312

RESUMO

Orobanche and Phelipanche species (the broomrapes) are root parasitic plants, some of which cause heavy yield losses on important crops. The development of herbicides based on natural metabolites from microbial and plant origin, targeting early stages on parasitic plant development, might contribute to the reduction of broomrape seed bank in agricultural soils. Therefore, the effect of metabolites belonging to different classes of natural compounds on broomrape seed germination and radicle development was assayed in vitro. Among the metabolites tested, epi-sphaeropsidone, cyclopaldic acid, and those belonging to the sesquiterpene class induced broomrape germination in a species-specific manner. epi-Epoformin, sphaeropsidin A, and cytochalasans inhibited germination of GR24-treated broomrape seeds. The growth of broomrape radicle was strongly inhibited by sphaeropsidin A and compounds belonging to cyclohexene epoxide and cytochalasan classes. Broomrape radicles treated with epi-sphaeropsidone developed a layer of papillae while radicles treated with cytochalasans or with sphaeropsidin A turned necrotic. These findings allow new lead natural herbicides for the management of parasitic weeds to be identified.


Assuntos
Fungos/química , Germinação/efeitos dos fármacos , Herbicidas/farmacologia , Orobanche/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Daninhas/crescimento & desenvolvimento , Plantas/química , Herbicidas/química , Herbicidas/isolamento & purificação , Orobanche/crescimento & desenvolvimento , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plantas Daninhas/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento
5.
Phytochemistry ; 103: 145-153, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24768282

RESUMO

In this study, a strain (BL 101) of a species of Lasiodiplodia, not yet formally described, which was isolated from declining grapevine plants showing wedge-shaped cankers, was investigated for its ability to produce in vitro bioactive secondary metabolites. From culture filtrates of this strain three jasmonic acid esters, named lasiojasmonates A-C and 16-O-acetylbotryosphaerilactones A and C were isolated together with (1R,2R)-jasmonic acid, its methyl ester, botryosphaerilactone A, (3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone and (3R,4S)-botryodiplodin. The structures of lasiojasmonates A-C were established by spectroscopic methods as (1R*,2R*,3'S*,4'R*,5'R*)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone, (1R*,2R*,3'S*,4'R*,5'R*,10'R*,12'R*,13'R*,14'S*) and (1R*,2R*,3'S*,4'R*,5'R*,10'S*,12'R*,13'R*,14'S*)-4-(4-hydroxymethyl-3,5-dimethyltetrahydro-furan-2-yloxymethyl)-3,5-dimethyldihydro-2-furanones jasmonates (1, 4 and 5). The structures of 16-O-acetylbotryosphaerilactones A and C were determined by comparison of their spectral data with those of the corresponding acetyl derivatives obtained by acetylation of botryosphaerilactone A. The metabolites isolated, except 4 and 5, were tested at 1mg/mL on leaves of grapevine cv. Cannonau and cork oak using the leaf puncture assay. They were also tested on detached grapevine leaves at 0.5mg/mL and tomato cuttings at 0.1mg/mL. In all phytotoxic assays only jasmonic acid was found to be active. All metabolites were inactive in the zootoxic assay at 50 µg/mL.


Assuntos
Ascomicetos/química , Ciclopentanos/química , Ésteres/química , Oxilipinas/química , Vitis/microbiologia , Ésteres/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Estrutura Molecular , Folhas de Planta/efeitos dos fármacos , Vitis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA