Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Ecol Biogeogr ; 30(7): 1545-1554, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36618082

RESUMO

Aim: The aim was to evaluate the effects of climate warming on biodiversity across spatial scales (i.e., α-, ß- and γ-diversity) and the effects of patch openness and experimental context on diversity responses. Location: Global. Time period: 1995-2017. Major taxa studied: Fungi, invertebrates, phytoplankton, plants, seaweed, soil microbes and zooplankton. Methods: We compiled data from warming experiments and conducted a meta-analysis to evaluate the effects of warming on different components of diversity (such as species richness and equivalent numbers) at different spatial scales (α-, ß- and γ-diversity, partitioning ß-diversity into species turnover and nestedness components). We also investigated how these effects were modulated by system openness, defined as the possibility of replicates being colonized by new species, and experimental context (duration, mean temperature change and ecosystem type). Results: Experimental warming did not affect local species richness (α-diversity) but decreased effective numbers of species by affecting species dominance. Warming increased species spatial turnover (ß-diversity), although no significant changes were detected at the regional scale (γ-diversity). Site openness and experimental context did not significantly affect our results, despite significant heterogeneity in the effect sizes of α- and ß-diversity. Main conclusions: Our meta-analysis shows that the effects of warming on biodiversity are scale dependent. The local and regional inventory diversity remain unaltered, whereas species composition across temperature gradients and the patterns of species dominance change with temperature, creating novel communities that might be harder to predict.

2.
Oecologia ; 196(3): 633-647, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34146131

RESUMO

Progress in phylogenetic community ecology is often limited by the availability of phylogenetic information and the lack of appropriate methods and solutions to deal with this problem. We estimate the effect of the lack of phylogenetic information on the relations among taxa measured by commonly used phylogenetic metrics in comparative studies and community ecology, namely: Blomberg's K phylogenetic signal, Faith's Phylogenetic Diversity (PD), Mean Phylogenetic Distance (MPD) and Mean Nearest Taxon Distance (MNTD). To overcome this problem, we tested two possible solutions: Polytomic trees and Operational trees. Our results show that the effects on K values strongly depended on the level of phylogenetic signal. In the case of the community metrics, the effects were insensitive to the patterns of species distribution in the communities. Community metrics tended to be overestimated with both Polytomic and Operational trees, but the overestimation was higher with Polytomic trees. PD and MPD metrics were less biased than MNTD metric. We show that the lack of phylogenetic resolution is not necessarily problematic for all analyses and that its effect will depend on the chosen metric and on the solutions used to deal with the problem. Based on our results, we suggest that ecologists should prefer the Operational tree solution to remove polytomies in the phylogenetic tree and take careful consideration while designing experiments, and analyzing and interpreting the results of phylogenetic metrics.


Assuntos
Ecologia , Filogenia , Incerteza
3.
An Acad Bras Cienc ; 85(1): 285-94, 2013 03.
Artigo em Inglês | MEDLINE | ID: mdl-23460432

RESUMO

The present study was based on the analysis of spraints (n = 294) collected between December 2005 and November 2007. The importance of each type of prey was determined by absolute and relative frequency. Niche breadth was also estimated. The results were reported as mean (± SD) of relative frequencies. Fish were the main prey found in spraints (57.8 ± 7.0%). Fish from Callichthyidae family were the main prey, followed by Cichlidae, the species Hoplias malabaricus and the family Characidae. The frequencies of other fish and taxa were lower than 13.9% (absolute frequency) and 5.6% (relative frequency). Despite significant seasonal variations, (P = 0.001), niche breadth values were low in all seasons (0.39 ± 0.11). Therefore, Lontra longicaudis presented a narrow niche breadth as a result of consistent fish predation. Based on these data, fish with rapid movement presenting territorial behavior and benthic fish with slow movements are the most consumed. Seasonal fluctuations are caused by the increase of secondary prey in the diet during some seasons.


Assuntos
Comportamento Alimentar/fisiologia , Lontras/fisiologia , Animais , Brasil , Fezes , Lontras/classificação , Rios , Estações do Ano
4.
Ecol Evol ; 13(9): e10527, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720064

RESUMO

Ecological interactions between parasites and their hosts play a fundamental role in evolutionary processes. Selection pressures are exerted on parasites and their hosts, usually resulting in high levels of specificity. Such is the case of ectoparasitic bat-flies, but how large-scale spatial gradients affect the dynamics of their interactions with their bat hosts is still unknown. In the present study, we investigated interaction patterns between bats and their ectoparasitic flies (Streblidae and Nycteribiidae), both presenting their peak of diversity in the Neotropical region, along a latitudinal gradient. Using network analyses and parasitic indices, grounded on the latitudinal diversity gradient pattern, we evaluated how spatial gradients affect species interactions and parasitic indices at the biogeopraphic scale, with increasing species richness in interaction networks closer to the tropics, leading to increases in network modularity, size, and specialization, and to a decrease in nesting and connectivity. We conducted a literature review, focusing on studies done in the Neotropical region, and own data. We obtained a bat richness of 97 species parasitized by 128 species of ectoparasitic flies, distributed into 57 interaction networks between latitudes 29° S and 19° N in the Neotropic. Network metrics and parasitic indices varied along the latitudinal gradient, with changes in the richness of bats and their ectoparasitic flies and in the structure of their interactions; network specialization, modularity, and connectance increase with latitude, while network size decreases with latitude. Regions closer to the equator had higher parasite loads. Our results show that interaction network metrics present a latitudinal gradient and that such interactions, when observed at a local scale, hide variations that only become perceptible at larger scales. In this way, ectoparasites such as bat flies are not only influenced by the ecology and biology of their hosts, but also by other environmental factors acting directly on their distribution and survival.

5.
Nat Ecol Evol ; 6(3): 307-314, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35027724

RESUMO

Larger geographical areas contain more species-an observation raised to a law in ecology. Less explored is whether biodiversity changes are accompanied by a modification of interaction networks. We use data from 32 spatial interaction networks from different ecosystems to analyse how network structure changes with area. We find that basic community structure descriptors (number of species, links and links per species) increase with area following a power law. Yet, the distribution of links per species varies little with area, indicating that the fundamental organization of interactions within networks is conserved. Our null model analyses suggest that the spatial scaling of network structure is determined by factors beyond species richness and the number of links. We demonstrate that biodiversity-area relationships can be extended from species counts to higher levels of network complexity. Therefore, the consequences of anthropogenic habitat destruction may extend from species loss to wider simplification of natural communities.


Assuntos
Biodiversidade , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA