Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genet ; 15: 117, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25421611

RESUMO

BACKGROUND: The domestic turkey (Meleagris gallopavo) is an important agricultural species that is largely used as a meat-type bird. Characterizing genetic variation in populations of domesticated species and associating these variation patterns with the evolution, domestication, and selective breeding is critical for understanding the dynamics of genomic change in these species. Intense selective breeding and population bottlenecks are expected to leave signatures in the genome of domesticated species, such as unusually low nucleotide diversity or the presence of exceptionally extended haplotype homozygosity. These patterns of variation in selected populations are highly useful to not only understand the consequences of selective breeding and population dynamics, but also to provide insights into biological mechanisms that may affect physiological processes important to bring changes in phenotype of interest. RESULTS: We observed 54 genomic regions in heritage and commercial turkey populations on 14 different chromosomes that showed statistically significant (P < 0.05) reduction in genomic variation indicating candidate selective sweeps. Areas with evidence of selective sweeps varied from 1.5 Mb to 13.8 Mb in length. Out of these 54 sweeps, 23 overlapped at least partially between two or more populations. Overlapping sweeps were found on 13 different chromosomes. The remaining 31 sweeps were population-specific and were observed on 12 different chromosomes, with 26 of these regions present only in commercial populations. Genes that are known to affect growth were enriched in the sweep regions. CONCLUSION: The turkey genome showed large sweep regions. The relatively high number of sweep regions in commercial turkey populations compared to heritage varieties and the enrichment of genes important to growth in these regions, suggest that these sweeps are the result of intense selection in these commercial lines, moving specific haplotypes towards fixation.


Assuntos
Seleção Genética , Perus/crescimento & desenvolvimento , Perus/genética , Agricultura , Animais , Evolução Biológica , Cromossomos , Genética Populacional , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Morfogênese , Análise de Sequência de DNA , Perus/classificação
2.
BMC Genet ; 12: 14, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21266032

RESUMO

BACKGROUND: Turkey is an important agricultural species and is largely used as a meat bird. In 2004, turkey represented 6.5% of the world poultry meat production. The world-wide turkey population has rapidly grown due to increased commercial farming. Due to the high demand for turkey meat from both consumers and industry global turkey stocks increased from 100 million in 1970 to over 276 million in 2004. This rapidly increasing importance of turkeys was a reason to design this study for the estimation of genetic parameters that control body weight, body composition, meat quality traits and parameters that shape the growth curve in turkey birds. RESULTS: The average heritability estimate for body weight traits was 0.38, except for early weights that were strongly affected by maternal effects. This study showed that body weight traits, upper asymptote (a growth curve trait), percent breast meat and redness of meat had high heritability whereas heritabilities of breast length, breast width, percent drip loss, ultimate pH, lightness and yellowness of meat were medium to low. We found high positive genetic and phenotypic correlations between body weight, upper asymptote, most breast meat yield traits and percent drip loss but percent drip loss was found strongly negatively correlated with ultimate pH. Percent breast meat, however, showed genetic correlations close to zero with body weight traits and upper asymptote. CONCLUSION: The results of this analysis and the growth curve from the studied population of turkey birds suggest that the turkey birds could be selected for breeding between 60 and 80 days of age in order to improve overall production and the production of desirable cuts of meat. The continuous selection of birds within this age range could promote high growth rates but specific attention to meat quality would be needed to avoid a negative impact on the quality of meat.


Assuntos
Composição Corporal/genética , Peso Corporal/genética , Variação Genética , Animais , Aves Domésticas , Perus/genética , Perus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA