Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biodegradation ; 30(1): 71-85, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30729339

RESUMO

During the 1991 Gulf War, oil wells in the oil fields of Kuwait were set aflame and destroyed. This resulted in severe crude oil pollution of the countries only fresh water aquifers. Here, for the first time the natural attenuation and biodegradation of the persisting groundwater contamination was investigated to assess potential processes in the aquifer. Biodegradation experiments were conducted under aerobic and multiple anaerobic conditions using microcosms of the contaminated groundwater from Kuwait. Under the conditions tested, a portion of the total petroleum hydrocarbon (TPH) component was degraded, however there was only a slight change in the bulk concentration of the contaminant measured as dissolved organic carbon (DOC), suggesting the presence of a recalcitrant pollutant. Changes in the associated microbial community composition under different reduction-oxidation conditions were observed and known hydrocarbon degraders identified. The results of this study indicate that lingering contaminant still persists in the groundwater and is recalcitrant to further biodegradation, which presents challenges for future remediation plans.


Assuntos
Água Subterrânea/microbiologia , Guerra do Golfo , Poluição por Petróleo/análise , Petróleo/análise , Bactérias/metabolismo , Biodegradação Ambiental , Biodiversidade , Água Subterrânea/química , Kuweit , Poluentes Químicos da Água/análise
2.
Biodegradation ; 29(5): 443-461, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30039477

RESUMO

Once released into the environment, petroleum is exposed to biological and physical weathering processes which can lead to the formation and accumulation of highly recalcitrant polar compounds. These polar compounds are often challenging to analyse and can be present as an "unresolved complex mixture" (UCM) in total petroleum hydrocarbon (TPH) analyses and can be mistaken for natural organic matter. Existing research on UCMs comprised of polar compounds is limited, with a majority of the compounds remaining unidentified and their long-term persistence unknown. Here, we investigated the potential biodegradation of these recalcitrant polar compounds isolated from weathered diesel contaminant, and the changes in the microbial community composition associated with the biodegradation process. Microcosms were used to study the biodegradability of the polar compounds under various aerobic and anaerobic conditions and the results compared against the biodegradation of fresh diesel. Under all conditions tested, the majority of the polar UCM contaminant remained recalcitrant to biodegradation. The degradation was limited to the TPH portion of the polar UCM, which represented a minor fraction of the total polar UCM concentration. Changes in microbial community composition were observed under different redox conditions and in the presence of different contaminants. This work furthers the understanding of the biodegradation and long-term recalcitrance of polar compounds formed through weathering at contaminated legacy sites.


Assuntos
Meio Ambiente , Gasolina/análise , Aerobiose , Anaerobiose , Análise de Variância , Bactérias/metabolismo , Biodegradação Ambiental , Biodiversidade , Poluentes Ambientais/análise , Petróleo/análise , Filogenia , Análise de Componente Principal
3.
Water Res ; 255: 121455, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527413

RESUMO

Quantifying the interlinked behaviour of the soil microbiome, fluid flow, multi-component transport and partitioning, and biodegradation is key to characterising vapour risks and natural source zone depletion (NSZD) of light non-aqueous phase liquid (LNAPL) petroleum hydrocarbons. Critical to vapour transport and NSZD is transport of gases through the vadose zone (oxygen from the atmosphere, volatile organic compounds (VOCs), methane and carbon dioxide from the zone of LNAPL biodegradation). Volatilisation of VOCs from LNAPL, aerobic biodegradation, methanogenesis and heat production all generate gas pressure changes that may lead to enhanced gas fluxes apart from diffusion. Despite the importance of the gaseous phase dynamics in the vadose zone processes, the relative pressure changes and consequent scales of advective (buoyancy and pressure driven) / diffusive transport is less studied. We use a validated multi-phase multi-component non-isothermal modelling framework to differentiate gas transport mechanisms. We simulate a multicomponent unweathered gasoline LNAPL with high VOC content to maximise the potential for pressure changes due to volatilisation and to enable the joint effects of methanogenesis and shallower aerobic biodegradation of vapours to be assessed, along with heat production. Considering a uniform fine sand profile with LNAPL resident in the water table capillary zone, results suggest that biodegradation plays the key role in gas phase formation and consequent pressure build-up. Results suggest that advection is the main transport mechanism over a thin zone inside the LNAPL/capillary region, where the effective gaseous diffusion is very low. In the bulk of the vadose zone above the LNAPL region, the pressure change is minimal, and gaseous diffusion is dominant. Even for high biodegradation rate cases, pressure build-up due to heat generation (inducing buoyancy effects) is smaller than the contribution of gas formation due to biodegradation. The findings are critical to support broader assumptions of diffusive transport being dominant in vapour transport and NSZD assessments.

4.
Environ Toxicol Chem ; 41(9): 2202-2208, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35781701

RESUMO

Per- and poly-fluoroalkyl substances (PFAS) in water are typically present in their ionic (nonvolatile) forms; however, these can transition to their nonionic (volatile) forms when in contact with organic solvents and organic matrices. In particular, when PFAS are dissolved in organic solvents such as residues left from firefighting foams, fuels, and bitumen present in asphalt, the equilibrium between ionic and nonionic forms can trend toward more volatile nonionic forms of PFAS. We assessed the volatility of common PFAS based on calculated and available experimental data across ambient temperature ranges experienced by airfield pavements and at elevated temperatures associated with reworking asphalts for reuse. Volatilities are shown to be comparable to hydrocarbons in the semivolatile range, suggesting that volatilization is a viable loss mechanism for some PFAS that are nonvolatile in water. The present study points to future investigative needs for this unexplored mass loss mechanism and potential exposure pathway. Environ Toxicol Chem 2022;41:2202-2208. © 2022 Commonwealth of Australia. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Fluorocarbonos , Hidrocarbonetos , Solventes , Volatilização , Água
5.
J Hazard Mater ; 430: 128482, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739665

RESUMO

Petroleum hydrocarbon contamination is a global problem which can cause long-term environmental damage and impacts water security. Natural source zone depletion (NSZD) is the natural degradation of such contaminants. Chemotaxis is an aspect of NSZD which is not fully understood, but one that grants microorganisms the ability to alter their motion in response to a chemical concentration gradient potentially enhancing petroleum NSZD mass removal rates. This study investigates the distribution of potentially chemotactic and hydrocarbon degrading microbes (CD) across the water table of a legacy petroleum hydrocarbon site near Perth, Western Australia in areas impacted by crude oil, diesel and jet fuel. Core samples were recovered and analysed for hydrocarbon contamination using gas chromatography. Predictive metagenomic profiling was undertaken to infer functionality using a combination of 16 S rRNA sequencing and PICRUSt2 analysis. Naphthalene contamination was found to significantly increase the occurrence of potential CD microbes, including members of the Comamonadaceae and Geobacteraceae families, which may enhance NSZD. Further work to explore and define this link is important for reliable estimation of biodegradation of petroleum hydrocarbon fuels. Furthermore, the outcomes suggest that the chemotactic parameter within existing NSZD models should be reviewed to accommodate CD accumulation in areas of naphthalene contamination, thereby providing a more accurate quantification of risk from petroleum impacts in subsurface environments, and the scale of risk mitigation due to NSZD.


Assuntos
Poluição por Petróleo , Petróleo , Biodegradação Ambiental , Humanos , Hidrocarbonetos/metabolismo , Naftalenos , Petróleo/análise , Poluição por Petróleo/análise
6.
Analyst ; 136(18): 3731-8, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21804960

RESUMO

This paper presents a system and method developed to identify a source oil's characteristic properties by testing the oil's dissolved components in water. Through close examination of the oil dissolution process in water, we hypothesise that when oil is in contact with water, the resulting oil-water extract, a complex hydrocarbon mixture, carries the signature property information of the parent oil. If the dominating differences in compositions between such extracts of different oils can be identified, this information could guide the selection of various sensors, capable of capturing such chemical variations. When used as an array, such a sensor system can be used to determine parent oil information from the oil-water extract. To test this hypothesis, 22 oils' water extracts were prepared and selected dominant hydrocarbons analyzed with Gas Chromatography-Mass Spectrometry (GC-MS); the subsequent Principal Component Analysis (PCA) indicates that the major difference between the extract solutions is the relative concentration between the volatile mono-aromatics and fluorescent polyaromatics. An integrated sensor array system that is composed of 3 volatile hydrocarbon sensors and 2 polyaromatic hydrocarbon sensors was built accordingly to capture the major and subtle differences of these extracts. It was tested by exposure to a total of 110 water extract solutions diluted from the 22 extracts. The sensor response data collected from the testing were processed with two multivariate analysis tools to reveal information retained in the response patterns of the arrayed sensors: by conducting PCA, we were able to demonstrate the ability to qualitatively identify and distinguish different oil samples from their sensor array response patterns. When a supervised PCA, Linear Discriminate Analysis (LDA), was applied, even quantitative classification can be achieved: the multivariate model generated from the LDA achieved 89.7% of successful classification of the type of the oil samples. By grouping the samples based on the level of viscosity and density we were able to reveal the correlation between the oil extracts' sensor array responses and their original oils' feature properties. The equipment and method developed in this study have promising potential to be readily applied in field studies and marine surveys for oil exploration or oil spill monitoring.

7.
Water Res ; 170: 115314, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31835139

RESUMO

During the First Gulf War (1991) a large number of oil wells were destroyed and oil fires subsequently extinguished with seawater. As a result Kuwait's sparse fresh groundwater resources were severely contaminated with crude oil. Since then limited research has focused on the microbial community ecology of the groundwater and their impact on the associated contamination. Here, the microbial community ecology (bacterial, archaeal and eukaryotic) and how it relates to the characteristics of the hydrocarbon contaminants were examined for the first time since the 1991 event. This study was conducted using 15 wells along the main groundwater flow direction and detected several potential hydrocarbon degrading microorganisms such as Hyphomicrobiaceae, Porphyromonadaceae and Eurotiomycetes. The beta diversity of the microbial communities correlated significantly with total petroleum hydrocarbon (TPH) concentrations and salinity. The TPH consisted mainly of polar compounds present as an unresolved complex mixture (UCM) of a highly recalcitrant nature. Based on the proportions of TPH to dissolved organic carbon (DOC), the results indicate that some minor biodegradation has occurred within highly contaminated aquifer zones. However, overall the results from this study suggest that the observed variations in TPH concentrations among the sampled wells are mainly induced by mixing/dilution with pristine groundwater rather than by biodegradation of the contaminants. The findings make an important contribution to better understand the fate of the groundwater pollution in Kuwait, with important implications for the design of future remediation efforts.


Assuntos
Água Subterrânea , Microbiota , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Biodegradação Ambiental , Guerra do Golfo , Hidrocarbonetos , Kuweit
8.
Water Res ; 157: 630-646, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004979

RESUMO

Natural source zone depletion (NSZD) of light non-aqueous phase liquids (LNAPLs) includes partitioning, transport and degradation of LNAPL components. NSZD is being considered as a site closure option during later stages of active remediation of LNAPL contaminated sites, and where LNAPL mass removal is limiting. To ensure NSZD meets compliance criteria and to design enhanced NSZD actions if required, residual risks posed by LNAPL and its long term behaviour require estimation. Prediction of long-term NSZD trends requires linking physicochemical partitioning and transport processes with bioprocesses at multiple scales within a modelling framework. Here we expand and build on the knowledge base of a recent review of NSZD, to establish the key processes and understanding required to model NSZD long term. We describe key challenges to our understanding, inclusive of the dominance of methanogenic or aerobic biodegradation processes, the potentially changeability of rates due to the weathering profile of LNAPL product types and ages, and linkages to underlying bioprocesses. We critically discuss different scales in subsurface simulation and modelling of NSZD. Focusing on processes at Darcy scale, 36 models addressing processes of importance to NSZD are investigated. We investigate the capabilities of models to accommodate more than 20 subsurface transport and transformation phenomena and present comparisons in several tables. We discuss the applicability of each group of models for specific site conditions.


Assuntos
Movimentos da Água , Biodegradação Ambiental
9.
J Contam Hydrol ; 196: 30-42, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27979461

RESUMO

Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack. A constant horizontal pore velocity was maintained and water samples were recovered across 38 sampling ports over 141days. Inside the residual NAPL zone, BTEX and TMBs dissolution curves were in agreement with the TMVOC model based on the local equilibrium assumption. Results compared to previous numerical studies suggest the presence of small scale dissolution fingering created perpendicular to the horizontal dissolution front, mainly triggered by heterogeneities in the medium structure and the local NAPL residual saturation. In the transition zone, TMVOC was able to represent a range of behaviours exhibited by the data, confirming equilibrium or near-equilibrium dissolution at the scale of investigation. The model locally showed discrepancies with the most soluble compounds, i.e. benzene and toluene, due to local heterogeneities exhibiting that at lower scale flow bypassing and channelling may have occurred. In these conditions mass transfer rates were still high enough to fall under the equilibrium assumption in TMVOC at the scale of investigation. Comparisons with other models involving upscaled mass transfer rates demonstrated that such approximations with TMVOC could lead to overestimate BTEX dissolution rates and underestimate the total remediation time.


Assuntos
Gasolina/análise , Água Subterrânea/química , Substâncias Perigosas/análise , Modelos Teóricos , Dióxido de Silício/química , Poluentes Químicos da Água/análise , Benzeno/análise , Benzeno/química , Substâncias Perigosas/química , Cinética , Poluição por Petróleo/análise , Solubilidade , Tolueno/análise , Tolueno/química , Poluentes Químicos da Água/química
10.
J Contam Hydrol ; 188: 1-11, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26934432

RESUMO

A permeable reactive barrier, consisting of both zero valent iron (ZVI) and a biodegradable organic carbon, was evaluated for the remediation of 1,1,2-trichloroethane (1,1,2-TCA) contaminated groundwater. During an 888 day laboratory column study, degradation rates initially stabilized with a degradation half-life of 4.4±0.4 days. Based on the accumulation of vinyl chloride (VC) and limited production of 1,1-dichloroethene (1,1-DCE) and 1,2-dichloroethane (1,2-DCA), the dominant degradation pathway was likely abiotic dichloroelimination to form VC. Degradation of VC was not observed based on the accumulation of VC and limited ethene production. After a step reduction in the influent concentration of 1,1,2-TCA from 170±20 mg L(-1) to 39±11 mg L(-1), the degradation half-life decreased 5-fold to 0.83±0.17 days. The isotopic enrichment factor of 1,1,2-TCA also changed after the step reduction from -14.6±0.7‰ to -0.72±0.12‰, suggesting a possible change in the degradation mechanism from abiotic reductive degradation to biodegradation. Microbiological data suggested a co-culture of Desulfitobacterium and Dehalococcoides was responsible for the biodegradation of 1,1,2-TCA to ethene.


Assuntos
Carbono/química , Ferro/química , Tricloroetanos/análise , Cloreto de Vinil/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Biodegradação Ambiental , Chloroflexi/crescimento & desenvolvimento , Desulfitobacterium/crescimento & desenvolvimento , Água Subterrânea/química
11.
J Contam Hydrol ; 160: 1-11, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24594408

RESUMO

The composition of light non-aqueous phase liquid (LNAPL) gasoline and other petroleum products changes profoundly over their life once released into aquifers. However limited attention has been given to how such changes affect key parameters such as the activity coefficients which control partitioning of components of petroleum fuel into groundwater and are used to predict long-term risk from fuel releases. Laboratory experiments were conducted on a range of fresh, weathered and synthetic gasoline mixtures designed to mimic the expected changes in composition in an aquifer. Weathered gasoline created under controlled evaporation and water washing, and naturally weathered gasoline, were investigated. Equilibrium concentrations in water and molar fractions in the gasoline mixtures were compared with equilibrium concentrations predicted by Raoult's law assuming ideal behaviour of the solutions. The experiments carried out allowed the relative sensitivity of the activity coefficients of key risk drivers such as benzene, toluene, ethylbenzene and xylene (BTEX) compounds to be quantified with respect to the presence of other types of compounds and where the source LNAPL had undergone different types of weathering. Results differed for the mixtures examined but in some cases higher than predicted dissolved equilibrium concentrations showed non-ideal behaviour for toluene, benzene and xylenes. Comparison of the activity coefficients showed that the naturally weathered gasoline and a 50% evaporated unleaded gasoline present a similar range of values varying between 1.0 and 1.2, suggesting close to ideal partitioning between the LNAPL and water. The fresh and water-washed gasoline had higher values for the activity coefficient, from 1.2 to 1.4, indicating non-ideal partitioning. Results from synthetic mixtures demonstrated that these differences could be due to the different molar fractions of the nC5 and nC6 aliphatic hydrocarbons acting on the molecular interactions, while differences in molar volumes seemed to have less of an influence on ideality.


Assuntos
Gasolina/análise , Poluição por Petróleo , Poluentes Químicos da Água/química , Água Subterrânea , Poluentes Químicos da Água/análise , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA