Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proteins ; 88(11): 1434-1446, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32530065

RESUMO

Tyrosine phosphorylation, a highly regulated post-translational modification, is carried out by the enzyme tyrosine kinase (TK). TKs are important mediators in signaling cascades, facilitating diverse biological processes in response to stimuli. TKs may acquire mutations leading to malignancy and are viable targets for anti-cancer drugs. Mast/stem cell growth factor receptor KIT is a TK involved in cell differentiation, whose dysregulation leads to various types of cancer, including gastrointestinal stromal tumors, leukemia, and melanoma. KIT can be targeted by a range of inhibitors that predominantly bind to the inactive state of the enzyme. A mutation Y823D in the activation loop of KIT is known to be responsible for the loss of sensitivity to some drugs in metastatic tumors. We used all-atom molecular dynamics simulations to study the impact of Y823D on the KIT conformation and dynamics and compared it to the effect of phosphorylation of Y823. We simulated in total 6.4 µs of wild-type, mutant and phosphorylated KIT in the active- and inactive-state conformations. We found that Y823D affects the protein dynamics differently: in the active state, the mutation increases the protein stability, whereas in the inactive state it induces local destabilization, thus shifting the dynamic equilibrium towards the active state, altering the communication between distant regulatory regions. The observed dynamics of the Y823D mutant is similar to the dynamics of KIT phosphorylated at position Y823, thus we hypothesize that this mutation mimics a constitutively active kinase, which is not responsive to inhibitors that bind its inactive conformation.


Assuntos
Antineoplásicos/química , Ácido Aspártico/química , Inibidores de Proteínas Quinases/química , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-kit/química , Tirosina/química , Antineoplásicos/metabolismo , Ácido Aspártico/metabolismo , Sítios de Ligação , Bases de Dados de Proteínas , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Ligação de Hidrogênio , Ligantes , Simulação de Dinâmica Molecular , Mutação , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Especificidade por Substrato , Termodinâmica , Tirosina/metabolismo
2.
Retrovirology ; 17(1): 13, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430025

RESUMO

BACKGROUND: HIV-1 can develop resistance to antiretroviral drugs, mainly through mutations within the target regions of the drugs. In HIV-1 protease, a majority of resistance-associated mutations that develop in response to therapy with protease inhibitors are found in the protease's active site that serves also as a binding pocket for the protease inhibitors, thus directly impacting the protease-inhibitor interactions. Some resistance-associated mutations, however, are found in more distant regions, and the exact mechanisms how these mutations affect protease-inhibitor interactions are unclear. Furthermore, some of these mutations, e.g. N88S and L76V, do not only induce resistance to the currently administered drugs, but contrarily induce sensitivity towards other drugs. In this study, mutations N88S and L76V, along with three other resistance-associated mutations, M46I, I50L, and I84V, are analysed by means of molecular dynamics simulations to investigate their role in complexes of the protease with different inhibitors and in different background sequence contexts. RESULTS: Using these simulations for alchemical calculations to estimate the effects of mutations M46I, I50L, I84V, N88S, and L76V on binding free energies shows they are in general in line with the mutations' effect on [Formula: see text] values. For the primary mutation L76V, however, the presence of a background mutation M46I in our analysis influences whether the unfavourable effect of L76V on inhibitor binding is sufficient to outweigh the accompanying reduction in catalytic activity of the protease. Finally, we show that L76V and N88S changes the hydrogen bond stability of these residues with residues D30/K45 and D30/T31/T74, respectively. CONCLUSIONS: We demonstrate that estimating the effect of both binding pocket and distant mutations on inhibitor binding free energy using alchemical calculations can reproduce their effect on the experimentally measured [Formula: see text] values. We show that distant site mutations L76V and N88S affect the hydrogen bond network in the protease's active site, which offers an explanation for the indirect effect of these mutations on inhibitor binding. This work thus provides valuable insights on interplay between primary and background mutations and mechanisms how they affect inhibitor binding.


Assuntos
Farmacorresistência Viral/genética , Inibidores da Protease de HIV/farmacologia , Protease de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/genética , Mutação , Sítios de Ligação , Domínio Catalítico , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Simulação de Dinâmica Molecular
3.
Drug Discov Today Technol ; 32-33: 65-72, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33386096

RESUMO

Application of AI technologies in synthesis prediction has developed very rapidly in recent years. We attempt here to give a comprehensive summary on the latest advancement on retro-synthesis planning, forward synthesis prediction as well as quantum chemistry-based reaction prediction models. Besides an introduction on the AI/ML models for addressing various synthesis related problems, the sources of the reaction datasets used in model building is also covered. In addition to the predictive models, the robotics based high throughput experimentation technology will be another crucial factor for conducting synthesis in an automated fashion. Some state-of-the-art of high throughput experimentation practices carried out in the pharmaceutical industry are highlighted in this chapter to give the reader a sense of how future chemistry will be conducted to make compounds faster and cheaper.


Assuntos
Inteligência Artificial , Desenho Assistido por Computador , Medicamentos Sintéticos/química , Humanos
4.
Mol Syst Biol ; 11(11): 837, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26538579

RESUMO

Mitogen-activated protein kinases (MAPK) are broadly used regulators of cellular signaling. However, how these enzymes can be involved in such a broad spectrum of physiological functions is not understood. Systematic discovery of MAPK networks both experimentally and in silico has been hindered because MAPKs bind to other proteins with low affinity and mostly in less-characterized disordered regions. We used a structurally consistent model on kinase-docking motif interactions to facilitate the discovery of short functional sites in the structurally flexible and functionally under-explored part of the human proteome and applied experimental tools specifically tailored to detect low-affinity protein-protein interactions for their validation in vitro and in cell-based assays. The combined computational and experimental approach enabled the identification of many novel MAPK-docking motifs that were elusive for other large-scale protein-protein interaction screens. The analysis produced an extensive list of independently evolved linear binding motifs from a functionally diverse set of proteins. These all target, with characteristic binding specificity, an ancient protein interaction surface on evolutionarily related but physiologically clearly distinct three MAPKs (JNK, ERK, and p38). This inventory of human protein kinase binding sites was compared with that of other organisms to examine how kinase-mediated partnerships evolved over time. The analysis suggests that most human MAPK-binding motifs are surprisingly new evolutionarily inventions and newly found links highlight (previously hidden) roles of MAPKs. We propose that short MAPK-binding stretches are created in disordered protein segments through a variety of ways and they represent a major resource for ancient signaling enzymes to acquire new regulatory roles.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/ultraestrutura , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Biologia Computacional , Humanos , Simulação de Acoplamento Molecular , Alinhamento de Sequência , Transdução de Sinais , Propriedades de Superfície
5.
J Chem Theory Comput ; 14(7): 3397-3408, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29847122

RESUMO

Despite a large number of antiretroviral drugs targeting HIV-1 protease for inhibition, mutations in this protein during the course of patient treatment can render them inefficient. This emerging resistance inspired numerous computational studies of the HIV-1 protease aimed at predicting the effect of mutations on drug binding in terms of free binding energy Δ G, as well as in mechanistic terms. In this study, we analyze ten different protease-inhibitor complexes carrying major resistance-associated mutations (RAMs) G48V, I50V, and L90M using molecular dynamics simulations. We demonstrate that alchemical free energy calculations can consistently predict the effect of mutations on drug binding. By explicitly probing different protonation states of the catalytic aspartic dyad, we reveal the importance of the correct choice of protonation state for the accuracy of the result. We also provide insight into how different mutations affect drug binding in their specific ways, with the unifying theme of how all of them affect the crucial drug binding regions of the protease.


Assuntos
Inibidores da Protease de HIV/farmacologia , Protease de HIV/genética , HIV-1/enzimologia , Mutação Puntual , Algoritmos , Farmacorresistência Viral Múltipla , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Protease de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Modelos Biológicos , Simulação de Acoplamento Molecular , Ligação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA