Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 19(5): e3001252, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33983919

RESUMO

The mitochondrial ATP synthase emerges as key hub of cellular functions controlling the production of ATP, cellular signaling, and fate. It is regulated by the ATPase inhibitory factor 1 (IF1), which is highly abundant in neurons. Herein, we ablated or overexpressed IF1 in mouse neurons to show that IF1 dose defines the fraction of active/inactive enzyme in vivo, thereby controlling mitochondrial function and the production of mitochondrial reactive oxygen species (mtROS). Transcriptomic, proteomic, and metabolomic analyses indicate that IF1 dose regulates mitochondrial metabolism, synaptic function, and cognition. Ablation of IF1 impairs memory, whereas synaptic transmission and learning are enhanced by IF1 overexpression. Mechanistically, quenching the IF1-mediated increase in mtROS production in mice overexpressing IF1 reduces the increased synaptic transmission and obliterates the learning advantage afforded by the higher IF1 content. Overall, IF1 plays a key role in neuronal function by regulating the fraction of ATP synthase responsible for mitohormetic mtROS signaling.


Assuntos
Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , ATPases Mitocondriais Próton-Translocadoras/fisiologia , Cultura Primária de Células , Proteínas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteína Inibidora de ATPase
2.
FEBS Lett ; 597(2): 246-261, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36217875

RESUMO

The compartmentation and distribution of metabolites between mitochondria and the rest of the cell is a key parameter of cell signalling and pathology. Here, we have developed a rapid fractionation procedure that enables us to take mouse heart and liver from in vivo and within ~ 30 s stabilise the distribution of metabolites between mitochondria and the cytosol by rapid cooling, homogenisation and dilution. This is followed by centrifugation of mitochondria through an oil layer to separate mitochondrial and cytosolic fractions for subsequent metabolic analysis. Using this procedure revealed the in vivo compartmentation of mitochondrial metabolites and will enable the assessment of the distribution of metabolites between the cytosol and mitochondria during a range of situations in vivo.


Assuntos
Coração , Mitocôndrias , Camundongos , Animais , Citosol/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Fracionamento Celular/métodos
3.
Redox Biol ; 54: 102368, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35749842

RESUMO

Cell models of cardiac ischemia-reperfusion (IR) injury are essential to facilitate understanding, but current monolayer cell models poorly replicate the in vivo IR injury that occurs within a three-dimensional tissue. Here we show that this is for two reasons: the residual oxygen present in many cellular hypoxia models sustains mitochondrial oxidative phosphorylation; and the loss of lactate from cells into the incubation medium during ischemia enables cells to sustain glycolysis. To overcome these limitations, we incubated isolated adult mouse cardiomyocytes anoxically while inhibiting lactate efflux. These interventions recapitulated key markers of in vivo ischemia, notably the accumulation of succinate and the loss of adenine nucleotides. Upon reoxygenation after anoxia the succinate that had accumulated during anoxia was rapidly oxidized in association with extensive mitochondrial superoxide/hydrogen peroxide production and cell injury, mimicking reperfusion injury. This cell model will enable key aspects of cardiac IR injury to be assessed in vitro.


Assuntos
Miócitos Cardíacos , Traumatismo por Reperfusão , Animais , Modelos Animais de Doenças , Metabolismo Energético , Hipóxia/metabolismo , Isquemia/metabolismo , Lactatos/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Ácido Succínico/metabolismo
4.
Redox Biol ; 55: 102429, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35961099

RESUMO

Mitochondria-targeted H2S donors are thought to protect against acute ischemia-reperfusion (IR) injury by releasing H2S that decreases oxidative damage. However, the rate of H2S release by current donors is too slow to be effective upon administration following reperfusion. To overcome this limitation here we develop a mitochondria-targeted agent, MitoPerSulf that very rapidly releases H2S within mitochondria. MitoPerSulf is quickly taken up by mitochondria, where it reacts with endogenous thiols to generate a persulfide intermediate that releases H2S. MitoPerSulf is acutely protective against cardiac IR injury in mice, due to the acute generation of H2S that inhibits respiration at cytochrome c oxidase thereby preventing mitochondrial superoxide production by lowering the membrane potential. Mitochondria-targeted agents that rapidly generate H2S are a new class of therapy for the acute treatment of IR injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA