Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 19(2): 77-92, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28792006

RESUMO

Mitochondrial diseases affect one in 2,000 individuals; they can present at any age and they can manifest in any organ. How defects in mitochondria can cause such a diverse range of human diseases remains poorly understood. Insight into this diversity is emerging from recent research that investigated defects in mitochondrial protein synthesis and mitochondrial DNA maintenance, which showed that many cell-specific stress responses are induced in response to mitochondrial dysfunction. Studying the molecular regulation of these stress responses might increase our understanding of the pathogenesis and variability of human mitochondrial diseases.


Assuntos
Mitocôndrias/fisiologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/fisiopatologia , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/fisiologia , Humanos , Organelas/patologia , Organelas/fisiologia , Estresse Oxidativo
2.
Hum Mol Genet ; 33(R1): R53-R60, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38280230

RESUMO

Human mitochondrial DNA is one of the most simplified cellular genomes and facilitates compartmentalized gene expression. Within the organelle, there is no physical barrier to separate transcription and translation, nor is there evidence that quality control surveillance pathways are active to prevent translation on faulty mRNA transcripts. Mitochondrial ribosomes synthesize 13 hydrophobic proteins that require co-translational insertion into the inner membrane of the organelle. To maintain the integrity of the inner membrane, which is essential for organelle function, requires responsive quality control mechanisms to recognize aberrations in protein synthesis. In this review, we explore how defects in mitochondrial protein synthesis can arise due to the culmination of inherent mistakes that occur throughout the steps of gene expression. In turn, we examine the stepwise series of quality control processes that are needed to eliminate any mistakes that would perturb organelle homeostasis. We aim to provide an integrated view on the quality control mechanisms of mitochondrial protein synthesis and to identify promising avenues for future research.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Biossíntese de Proteínas , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , DNA Mitocondrial/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos Mitocondriais/metabolismo , Animais
3.
Nucleic Acids Res ; 51(14): 7563-7579, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36928678

RESUMO

Mutations in mitochondrial (mt-)tRNAs frequently cause mitochondrial dysfunction. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), and myoclonus epilepsy associated with ragged red fibers (MERRF) are major clinical subgroups of mitochondrial diseases caused by pathogenic point mutations in tRNA genes encoded in mtDNA. We previously reported a severe reduction in the frequency of 5-taurinomethyluridine (τm5U) and its 2-thiouridine derivative (τm5s2U) in the anticodons of mutant mt-tRNAs isolated from the cells of patients with MELAS and MERRF, respectively. The hypomodified tRNAs fail to decode cognate codons efficiently, resulting in defective translation of respiratory chain proteins in mitochondria. To restore the mitochondrial activity of MELAS patient cells, we overexpressed MTO1, a τm5U-modifying enzyme, in patient-derived myoblasts. We used a newly developed primer extension method and showed that MTO1 overexpression almost completely restored the τm5U modification of the MELAS mutant mt-tRNALeu(UUR). An increase in mitochondrial protein synthesis and oxygen consumption rate suggested that the mitochondrial function of MELAS patient cells can be activated by restoring the τm5U of the mutant tRNA. In addition, we confirmed that MTO1 expression restored the τm5s2U of the mutant mt-tRNALys in MERRF patient cells. These findings pave the way for epitranscriptomic therapies for mitochondrial diseases.


Assuntos
Síndrome MELAS , Síndrome MERRF , RNA de Transferência , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Síndrome MELAS/terapia , Síndrome MERRF/genética , Síndrome MERRF/metabolismo , Síndrome MERRF/terapia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , RNA de Transferência/genética , RNA de Transferência/metabolismo
4.
Hum Mol Genet ; 31(8): 1230-1241, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34718584

RESUMO

Pathogenic variants that disrupt human mitochondrial protein synthesis are associated with a clinically heterogeneous group of diseases. Despite an impairment in oxidative phosphorylation being a common phenotype, the underlying molecular pathogenesis is more complex than simply a bioenergetic deficiency. Currently, we have limited mechanistic understanding on the scope by which a primary defect in mitochondrial protein synthesis contributes to organelle dysfunction. Since the proteins encoded in the mitochondrial genome are hydrophobic and need co-translational insertion into a lipid bilayer, responsive quality control mechanisms are required to resolve aberrations that arise with the synthesis of truncated and misfolded proteins. Here, we show that defects in the OXA1L-mediated insertion of MT-ATP6 nascent chains into the mitochondrial inner membrane are rapidly resolved by the AFG3L2 protease complex. Using pathogenic MT-ATP6 variants, we then reveal discrete steps in this quality control mechanism and the differential functional consequences to mitochondrial gene expression. The inherent ability of a given cell type to recognize and resolve impairments in mitochondrial protein synthesis may in part contribute at the molecular level to the wide clinical spectrum of these disorders.


Assuntos
Fosforilação Oxidativa , Biossíntese de Proteínas , Proteínas Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Fenótipo
5.
Am J Hum Genet ; 108(11): 2195-2204, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34715011

RESUMO

Human mitochondrial RNase P (mt-RNase P) is responsible for 5' end processing of mitochondrial precursor tRNAs, a vital step in mitochondrial RNA maturation, and is comprised of three protein subunits: TRMT10C, SDR5C1 (HSD10), and PRORP. Pathogenic variants in TRMT10C and SDR5C1 are associated with distinct recessive or x-linked infantile onset disorders, resulting from defects in mitochondrial RNA processing. We report four unrelated families with multisystem disease associated with bi-allelic variants in PRORP, the metallonuclease subunit of mt-RNase P. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. Fibroblasts from affected individuals in two families demonstrated decreased steady state levels of PRORP, an accumulation of unprocessed mitochondrial transcripts, and decreased steady state levels of mitochondrial-encoded proteins, which were rescued by introduction of the wild-type PRORP cDNA. In mt-tRNA processing assays performed with recombinant mt-RNase P proteins, the disease-associated variants resulted in diminished mitochondrial tRNA processing. Identification of disease-causing variants in PRORP indicates that pathogenic variants in all three subunits of mt-RNase P can cause mitochondrial dysfunction, each with distinct pleiotropic clinical presentations.


Assuntos
Alelos , Pleiotropia Genética , Mitocôndrias/enzimologia , RNA Mitocondrial/genética , RNA de Transferência/genética , Ribonuclease P/genética , Adulto , Feminino , Humanos , Masculino , Linhagem
6.
Hum Mol Genet ; 28(4): 639-649, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30358850

RESUMO

Dysfunction of mitochondrial translation is an increasingly important molecular cause of human disease, but structural defects of mitochondrial ribosomal subunits are rare. We used next-generation sequencing to identify a homozygous variant in the mitochondrial small ribosomal protein 14 (MRPS14, uS14m) in a patient manifesting with perinatal hypertrophic cardiomyopathy, growth retardation, muscle hypotonia, elevated lactate, dysmorphy and mental retardation. In skeletal muscle and fibroblasts from the patient, there was biochemical deficiency in complex IV of the respiratory chain. In fibroblasts, mitochondrial translation was impaired, and ectopic expression of a wild-type MRPS14 cDNA functionally complemented this defect. Surprisingly, the mutant uS14m was stable and did not affect assembly of the small ribosomal subunit. Instead, structural modeling of the uS14m mutation predicted a disruption to the ribosomal mRNA channel.Collectively, our data demonstrate pathogenic mutations in MRPS14 can manifest as a perinatal-onset mitochondrial hypertrophic cardiomyopathy with a novel molecular pathogenic mechanism that impairs the function of mitochondrial ribosomes during translation elongation or mitochondrial mRNA recruitment rather than assembly.


Assuntos
Cardiomiopatia Hipertrófica/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Ribossômicas/genética , Acidose Láctica/genética , Acidose Láctica/metabolismo , Acidose Láctica/patologia , Sequência de Aminoácidos/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Criança , Pré-Escolar , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Lactente , Recém-Nascido , Mitocôndrias/metabolismo , Doenças Mitocondriais/patologia , Ribossomos Mitocondriais/metabolismo , Ribossomos Mitocondriais/patologia , Mutação , Linhagem
7.
Neurobiol Dis ; 124: 14-28, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30389403

RESUMO

Spinocerebellar ataxia 28 is an autosomal dominant neurodegenerative disorder caused by missense mutations affecting the proteolytic domain of AFG3L2, a major component of the mitochondrial m-AAA protease. However, little is known of the underlying pathogenetic mechanisms or how to treat patients with SCA28. Currently available Afg3l2 mutant mice harbour deletions that lead to severe, early-onset neurological phenotypes that do not faithfully reproduce the late-onset and slowly progressing SCA28 phenotype. Here we describe production and detailed analysis of a new knock-in murine model harbouring an Afg3l2 allele carrying the p.Met665Arg patient-derived mutation. Heterozygous mutant mice developed normally but adult mice showed signs of cerebellar ataxia detectable by beam test. Although cerebellar pathology was negative, electrophysiological analysis showed a trend towards increased spontaneous firing in Purkinje cells from heterozygous mutants with respect to wild-type controls. As homozygous mutants died perinatally with evidence of cardiac atrophy, for each genotype we generated mouse embryonic fibroblasts (MEFs) to investigate mitochondrial function. MEFs from mutant mice showed altered mitochondrial bioenergetics, with decreased basal oxygen consumption rate, ATP synthesis and mitochondrial membrane potential. Mitochondrial network formation and morphology was altered, with greatly reduced expression of fusogenic Opa1 isoforms. Mitochondrial alterations were also detected in cerebella of 18-month-old heterozygous mutants and may be a hallmark of disease. Pharmacological inhibition of de novo mitochondrial protein translation with chloramphenicol caused reversal of mitochondrial morphology in homozygous mutant MEFs, supporting the relevance of mitochondrial proteotoxicity for SCA28 pathogenesis and therapy development.


Assuntos
Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Ataxias Espinocerebelares/congênito , Animais , Feminino , Técnicas de Introdução de Genes , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Células de Purkinje/fisiologia , Células de Purkinje/ultraestrutura , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia
8.
Hum Mol Genet ; 25(4): 706-14, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26681804

RESUMO

Mitochondria are dynamic organelles that divide and fuse by remodeling an outer and inner membrane in response to developmental, physiological and stress stimuli. These events are coordinated by conserved dynamin-related GTPases. The dynamics of mitochondrial morphology require coordination with mitochondrial DNA (mtDNA) to ensure faithful genome transmission, however, this process remains poorly understood. Mitochondrial division is linked to the segregation of mtDNA but how it affects cases of mtDNA heteroplasmy, where two or more mtDNA variants/mutations co-exist in a cell, is unknown. Segregation of heteroplasmic human pathogenic mtDNA mutations is a critical factor in the onset and severity of human mitochondrial diseases. Here, we investigated the coupling of mitochondrial morphology to the transmission and segregation of mtDNA in mammals by taking advantage of two genetically modified mouse models: one with a dominant-negative mutation in the dynamin-related protein 1 (Drp1 or Dnm1l) that impairs mitochondrial fission and the other, heteroplasmic mice segregating two neutral mtDNA haplotypes (BALB and NZB). We show a tissue-specific response to mtDNA segregation from a defect in mitochondrial fission. Only mtDNA segregation in the hematopoietic compartment is modulated from impaired Dnm1l function. In contrast, no effect was observed in other tissues arising from the three germ layers during development and in mtDNA transmission through the female germline. Our data suggest a robust organization of a heteroplasmic mtDNA segregating unit across mammalian cell types that can overcome impaired mitochondrial division to ensure faithful transmission of the mitochondrial genome.


Assuntos
DNA Mitocondrial/fisiologia , Mitocôndrias/fisiologia , Dinâmica Mitocondrial/fisiologia , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Haplótipos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NZB , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Modelos Animais
9.
Nucleic Acids Res ; 42(2): 1111-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163253

RESUMO

Variants of mitochondrial DNA (mtDNA) are commonly used as markers to track human evolution because of the high sequence divergence and exclusive maternal inheritance. It is assumed that the inheritance is clonal, i.e. that mtDNA is transmitted between generations without germline recombination. In contrast to this assumption, a number of studies have reported the presence of recombinant mtDNA molecules in cell lines and animal tissues, including humans. If germline recombination of mtDNA is frequent, it would strongly impact phylogenetic and population studies by altering estimates of coalescent time and branch lengths in phylogenetic trees. Unfortunately, this whole area is controversial and the experimental approaches have been widely criticized as they often depend on polymerase chain reaction (PCR) amplification of mtDNA and/or involve studies of transformed cell lines. In this study, we used an in vivo mouse model that has had germline heteroplasmy for a defined set of mtDNA mutations for more than 50 generations. To assess recombination, we adapted and validated a method based on cloning of single mtDNA molecules in the λ phage, without prior PCR amplification, followed by subsequent mutation analysis. We screened 2922 mtDNA molecules and found no germline recombination after transmission of mtDNA under genetically and evolutionary relevant conditions in mammals.


Assuntos
DNA Mitocondrial/química , Recombinação Genética , Animais , Artefatos , Bacteriófago lambda/genética , Clonagem Molecular , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase
10.
J Cell Sci ; 126(Pt 19): 4331-8, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24013545

RESUMO

Organelle biosynthesis is a key requirement for cell growth and division. The regulation of mitochondrial biosynthesis exhibits additional layers of complexity compared with that of other organelles because they contain their own genome and dedicated ribosomes. Maintaining these components requires gene expression to be coordinated between the nucleo-cytoplasmic compartment and mitochondria in order to monitor organelle homeostasis and to integrate the responses to the physiological and developmental demands of the cell. Surprisingly, the parameters that are used to monitor or count mitochondrial abundance are not known, nor are the signalling pathways. Inhibiting the translation on mito-ribosomes genetically or with antibiotics can impair cell proliferation and has been attributed to defects in aerobic energy metabolism, even though proliferating cells rely primarily on glycolysis to fuel their metabolic demands. However, a recent study indicates that mitochondrial translational stress and the rescue mechanisms that relieve this stress cause the defect in cell proliferation and occur before any impairment of oxidative phosphorylation. Therefore, the process of mitochondrial translation in itself appears to be an important checkpoint for the monitoring of mitochondrial homeostasis and might have a role in establishing mitochondrial abundance within a cell. This hypothesis article will explore the evidence supporting a role for mito-ribosomes and translation in a mitochondria-counting mechanism.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Ribossomos/metabolismo , Processos de Crescimento Celular/fisiologia , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Biossíntese de Proteínas , Ribossomos/genética , Transdução de Sinais
11.
J Med Genet ; 50(3): 151-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23315540

RESUMO

BACKGROUND: The genetic complexity of infantile cardiomyopathies is remarkable, and the importance of mitochondrial translation defects as a causative factor is only starting to be recognised. We investigated the genetic basis for infantile onset recessive hypertrophic cardiomyopathy in two siblings. METHODS AND RESULTS: Analysis of respiratory chain enzymes revealed a combined deficiency of complexes I and IV in the heart and skeletal muscle. Exome sequencing uncovered a homozygous mutation (L156R) in MRPL44 of both siblings. MRPL44 encodes a protein in the large subunit of the mitochondrial ribosome and is suggested to locate in close proximity to the tunnel exit of the yeast mitochondrial ribosome. We found severely reduced MRPL44 levels in the patient's heart, skeletal muscle and fibroblasts suggesting that the missense mutation affected the protein stability. In patient fibroblasts, decreased MRPL44 affected assembly of the large ribosomal subunit and stability of 16S rRNA leading to complex IV deficiency. Despite this assembly defect, de novo mitochondrial translation was only mildly affected in fibroblasts suggesting that MRPL44 may have a function in the assembly/stability of nascent mitochondrial polypeptides exiting the ribosome. Retroviral expression of wild-type MRPL44 in patient fibroblasts rescued the large ribosome assembly defect and COX deficiency. CONCLUSIONS: These findings indicate that mitochondrial ribosomal subunit defects can generate tissue-specific manifestations, such as cardiomyopathy.


Assuntos
Cardiomiopatia Hipertrófica/genética , Exoma , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação , Proteínas Ribossômicas/genética , Adolescente , Sequência de Aminoácidos , Cardiomiopatia Hipertrófica/congênito , Ciclo-Oxigenase 1 , Complexo I de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons , Exoma/genética , Evolução Fatal , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Doenças Mitocondriais/congênito , Dados de Sequência Molecular , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Miocárdio/química , Miocárdio/metabolismo , Linhagem , Alinhamento de Sequência , Análise de Sequência de DNA
12.
PLoS Genet ; 6(10): e1001161, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20976251

RESUMO

Mitochondrial DNA (mtDNA) sequence variants segregate in mutation and tissue-specific manners, but the mechanisms remain unknown. The segregation pattern of pathogenic mtDNA mutations is a major determinant of the onset and severity of disease. Using a heteroplasmic mouse model, we demonstrate that Gimap3, an outer mitochondrial membrane GTPase, is a critical regulator of this process in leukocytes. Gimap3 is important for T cell development and survival, suggesting that leukocyte survival may be a key factor in the genetic regulation of mtDNA sequence variants and in modulating human mitochondrial diseases.


Assuntos
DNA Mitocondrial/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Haplótipos/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Embrião de Mamíferos/citologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Sistema Hematopoético/metabolismo , Humanos , Rim/metabolismo , Leucócitos/citologia , Leucócitos/metabolismo , Fígado/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Baço/metabolismo
13.
Nat Genet ; 33(2): 183-6, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12539044

RESUMO

Mammalian mitochondrial DNA (mtDNA) is a high copy-number, maternally inherited genome that codes for a small number of essential proteins involved in oxidative phosphorylation. Mutations in mtDNA are responsible for a broad spectrum of clinical disorders. The segregation pattern of pathogenic mtDNA mutants is an important determinant of the nature and severity of mitochondrial disease, but it varies with the specific mutation, cell type and nuclear background and generally does not correlate well with mitochondrial dysfunction. To identify nuclear genes that modify the segregation behavior of mtDNA, we used a heteroplasmic mouse model derived from two inbred strains (BALB/c and NZB; ref. 12), in which we had previously demonstrated tissue-specific and age-dependent directional selection for different mtDNA genotypes in the same mouse. Here we show that this phenotype segregates in F2 mice from a genetic cross (BALB/c x CAST/Ei) and that it maps to at least three quantitative-trait loci (QTLs). Genome-wide scans showed linkage of the trait to loci on Chromosomes 2, 5 and 6, accounting for 16-35% of the variance in the trait, depending on the tissue and age of the mouse. This is the first genetic evidence for nuclear control of mammalian mtDNA segregation.


Assuntos
Núcleo Celular/genética , Segregação de Cromossomos , DNA Mitocondrial/genética , Variação Genética , Camundongos Transgênicos/genética , Seleção Genética , Animais , Núcleo Celular/metabolismo , Cruzamentos Genéticos , Feminino , Efeito Fundador , Ligação Genética , Genótipo , Rim/fisiologia , Fígado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NZB , Modelos Genéticos , Músculo Esquelético/fisiologia , Especificidade de Órgãos , Fosforilação Oxidativa , Locos de Características Quantitativas , Baço/fisiologia , Células-Tronco/fisiologia
14.
Methods Mol Biol ; 2661: 101-117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166634

RESUMO

Faithful expression of the mitochondrial genome is required for the synthesis of the oxidative phosphorylation complexes and cell fitness. In humans, mitochondrial DNA (mtDNA) encodes 13 essential subunits of four oxidative phosphorylation complexes along with tRNAs and rRNAs needed for the translation of these proteins. Protein synthesis occurs on unique ribosomes within the organelle. Over the last decade, the revolution in genetic diagnostics has identified disruptions to the faithful synthesis of these 13 mitochondrial proteins as the largest group of inherited human mitochondrial pathologies. All of the molecular steps required for mitochondrial protein synthesis can be affected, from the genome to protein, including cotranslational quality control. Here, we describe methodologies for the biochemical separation of mitochondrial ribosomes from cultured human cells for RNA and protein analysis. Our method has been optimized to facilitate analysis for low-level sample material and thus does not require prior organelle enrichment.


Assuntos
Ribossomos Mitocondriais , RNA , Humanos , RNA/genética , RNA/metabolismo , Ribossomos Mitocondriais/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biossíntese de Proteínas , Fosforilação Oxidativa , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
15.
Front Mol Neurosci ; 16: 1175851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251643

RESUMO

The involvement of mitochondrial dysfunction in cystatin B (CSTB) deficiency has been suggested, but its role in the onset of neurodegeneration, myoclonus, and ataxia in the CSTB-deficient mouse model (Cstb-/-) is yet unknown. CSTB is an inhibitor of lysosomal and nuclear cysteine cathepsins. In humans, partial loss-of-function mutations cause the progressive myoclonus epilepsy neurodegenerative disorder, EPM1. Here we applied proteome analysis and respirometry on cerebellar synaptosomes from early symptomatic (Cstb-/-) mice to identify the molecular mechanisms involved in the onset of CSTB-deficiency associated neural pathogenesis. Proteome analysis showed that CSTB deficiency is associated with differential expression of mitochondrial and synaptic proteins, and respirometry revealed a progressive impairment in mitochondrial function coinciding with the onset of myoclonus and neurodegeneration in (Cstb-/-) mice. This mitochondrial dysfunction was not associated with alterations in mitochondrial DNA copy number or membrane ultrastructure. Collectively, our results show that CSTB deficiency generates a defect in synaptic mitochondrial bioenergetics that coincides with the onset and progression of the clinical phenotypes, and thus is likely a contributor to the pathogenesis of EPM1.

16.
J Clin Invest ; 133(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36301669

RESUMO

Signaling circuits crucial to systemic physiology are widespread, yet uncovering their molecular underpinnings remains a barrier to understanding the etiology of many metabolic disorders. Here, we identified a copper-linked signaling circuit activated by disruption of mitochondrial function in the murine liver or heart that resulted in atrophy of the spleen and thymus and caused a peripheral white blood cell deficiency. We demonstrated that the leukopenia was caused by α-fetoprotein, which required copper and the cell surface receptor CCR5 to promote white blood cell death. We further showed that α-fetoprotein expression was upregulated in several cell types upon inhibition of oxidative phosphorylation. Collectively, our data argue that α-fetoprotein may be secreted by bioenergetically stressed tissue to suppress the immune system, an effect that may explain the recurrent or chronic infections that are observed in a subset of mitochondrial diseases or in other disorders with secondary mitochondrial dysfunction.


Assuntos
Cobre , Doenças Mitocondriais , Camundongos , Animais , Cobre/metabolismo , alfa-Fetoproteínas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Terapia de Imunossupressão
17.
Sci Adv ; 8(46): eabq5234, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36399564

RESUMO

A stop codon within the mRNA facilitates coordinated termination of protein synthesis, releasing the nascent polypeptide from the ribosome. This essential step in gene expression is impeded with transcripts lacking a stop codon, generating nonstop ribosome complexes. Here, we use deep sequencing to investigate sources of nonstop mRNAs generated from the human mitochondrial genome. We identify diverse types of nonstop mRNAs on mitochondrial ribosomes that are resistant to translation termination by canonical release factors. Failure to resolve these aberrations by the mitochondrial release factor in rescue (MTRFR) imparts a negative regulatory effect on protein synthesis that is associated with human disease. Our findings reveal a source of underlying noise in mitochondrial gene expression and the importance of responsive ribosome quality control mechanisms for cell fitness and human health.

19.
Science ; 371(6531): 846-849, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33602856

RESUMO

Mitochondrial ribosomes (mitoribosomes) are tethered to the mitochondrial inner membrane to facilitate the cotranslational membrane insertion of the synthesized proteins. We report cryo-electron microscopy structures of human mitoribosomes with nascent polypeptide, bound to the insertase oxidase assembly 1-like (OXA1L) through three distinct contact sites. OXA1L binding is correlated with a series of conformational changes in the mitoribosomal large subunit that catalyze the delivery of newly synthesized polypeptides. The mechanism relies on the folding of mL45 inside the exit tunnel, forming two specific constriction sites that would limit helix formation of the nascent chain. A gap is formed between the exit and the membrane, making the newly synthesized proteins accessible. Our data elucidate the basis by which mitoribosomes interact with the OXA1L insertase to couple protein synthesis and membrane delivery.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/biossíntese , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas , Microscopia Crioeletrônica , Complexo IV da Cadeia de Transporte de Elétrons/química , Humanos , Proteínas de Membrana/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Ribossomos Mitocondriais/ultraestrutura , Modelos Moleculares , Proteínas Nucleares/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Ribossomos/metabolismo
20.
Front Mol Neurosci ; 13: 570640, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281550

RESUMO

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is a neurodegenerative disorder caused by loss-of-function mutations in the cystatin B (CSTB) gene. Progression of the clinical symptoms in EPM1 patients, including stimulus-sensitive myoclonus, tonic-clonic seizures, and ataxia, are well described. However, the cellular dysfunction during the presymptomatic phase that precedes the disease onset is not understood. CSTB deficiency leads to alterations in GABAergic signaling, and causes early neuroinflammation followed by progressive neurodegeneration in brains of a mouse model, manifesting as progressive myoclonus and ataxia. Here, we report the first proteome atlas from cerebellar synaptosomes of presymptomatic Cstb-deficient mice, and propose that early mitochondrial dysfunction is important to the pathogenesis of altered synaptic function in EPM1. A decreased sodium- and chloride dependent GABA transporter 1 (GAT-1) abundance was noted in synaptosomes with CSTB deficiency, but no functional difference was seen between the two genotypes in electrophysiological experiments with pharmacological block of GAT-1. Collectively, our findings provide novel insights into the early onset and pathogenesis of CSTB deficiency, and reveal greater complexity to the molecular pathogenesis of EPM1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA