Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Plant Cell Environ ; 42(5): 1561-1574, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30604429

RESUMO

Estimates of seasonal variation in photosynthetic capacity (Pc ) are critical for modeling the time course of carbon fluxes. Given the time-intensive nature of calculating Pc parameters via gas exchange, it is appealing to calculate parameter variation via changes in chlorophyll (Chl) and nitrogen (N) content by assuming that Pc scales with these variables. Although seasonal changes in Pc and the relationships between N and Pc have been evaluated in forest canopies, there is limited data on seasonal parameter values in crops, nor is it clear if seasonal changes in Pc can be estimated from leaf traits under the high N fertility of managed systems. We characterized the seasonal variability of the maximum rates of carboxylation (Vcmax ) and electron transport (Jmax ) under well-fertilized conditions for maize (Zea mays L.) and sunflower (Helianthus annuus L.) and coupled these data with measurements of Chl, N, and leaf mass per unit area (LMA). The seasonal Chl-N relationship was significant in maize, but not in sunflower. Area-based N-Vcmax relationships were not significant for either crop. Mass-based N-Vcmax relationships were weak in sunflower, but highly significant in maize. Our results suggest that Pc can be seasonally adjusted in maize with reliable estimates of changes in LMA.


Assuntos
Helianthus/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Zea mays/fisiologia , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Transporte de Elétrons/fisiologia , Nitrogênio/metabolismo , Estações do Ano
2.
Glob Chang Biol ; 25(4): 1445-1465, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30451349

RESUMO

Boreal forests are crucial in regulating global vegetation-atmosphere feedbacks, but the impact of climate change on boreal tree carbon fluxes is still unclear. Given the sensitivity of global vegetation models to photosynthetic and respiration parameters, we determined how predictions of net carbon gain (C-gain) respond to variation in these parameters using a stand-level model (MAESTRA). We also modelled how thermal acclimation of photosynthetic and respiratory temperature sensitivity alters predicted net C-gain responses to climate change. We modelled net C-gain of seven common boreal tree species under eight climate scenarios across a latitudinal gradient to capture a range of seasonal temperature conditions. Physiological parameter values were taken from the literature together with different approaches for thermally acclimating photosynthesis and respiration. At high latitudes, net C-gain was stimulated up to 400% by elevated temperatures and CO2 in the autumn but suppressed at the lowest latitudes during midsummer under climate scenarios that included warming. Modelled net C-gain was more sensitive to photosynthetic capacity parameters (Vcmax , Jmax , Arrhenius temperature response parameters, and the ratio of Jmax to Vcmax ) than stomatal conductance or respiration parameters. The effect of photosynthetic thermal acclimation depended on the temperatures where it was applied: acclimation reduced net C-gain by 10%-15% within the temperature range where the equations were derived but decreased net C-gain by 175% at temperatures outside this range. Thermal acclimation of respiration had small, but positive, impacts on net C-gain. We show that model simulations are highly sensitive to variation in photosynthetic parameters and highlight the need to better understand the mechanisms and drivers underlying this variability (e.g., whether variability is environmentally and/or biologically driven) for further model improvement.

3.
Glob Chang Biol ; 24(4): 1580-1598, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28991405

RESUMO

Photosynthetic temperature acclimation could strongly affect coupled vegetation-atmosphere feedbacks in the global carbon cycle, especially as the climate warms. Thermal acclimation of photosynthesis can be modelled as changes in the parameters describing the direct effect of temperature on photosynthetic capacity (i.e., activation energy, Ea ; deactivation energy, Hd ; entropy parameter, ΔS) or the basal value of photosynthetic capacity (i.e., photosynthetic capacity measured at 25°C). However, the impact of acclimating these parameters (individually or in combination) on vegetative carbon gain is relatively unexplored. Here we compare the ability of 66 photosynthetic temperature acclimation scenarios to improve the ability of a spatially explicit canopy carbon flux model, MAESTRA, to predict eddy covariance data from a loblolly pine forest. We show that: (1) incorporating seasonal temperature acclimation of basal photosynthetic capacity improves the model's ability to capture seasonal changes in carbon fluxes and outperforms acclimation of other single factors (i.e., Ea or ΔS alone); (2) multifactor scenarios of photosynthetic temperature acclimation provide minimal (if any) improvement in model performance over single factor acclimation scenarios; (3) acclimation of Ea should be restricted to the temperature ranges of the data from which the equations are derived; and (4) model performance is strongly affected by the Hd parameter. We suggest that a renewed effort be made into understanding whether basal photosynthetic capacity, Ea , Hd and ΔS co-acclimate across broad temperature ranges to determine whether and how multifactor thermal acclimation of photosynthesis occurs.


Assuntos
Aclimatação/fisiologia , Ciclo do Carbono , Modelos Biológicos , Fotossíntese/fisiologia , Carbono , Dióxido de Carbono , Clima , Florestas , Folhas de Planta/fisiologia , Temperatura
4.
New Phytol ; 216(1): 136-149, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28805245

RESUMO

Changes in tropical forest carbon sink strength during El Niño Southern Oscillation (ENSO) events can indicate future behavior under climate change. Previous studies revealed ˜6 Mg C ha-1  yr-1 lower net ecosystem production (NEP) during ENSO year 1998 compared with non-ENSO year 2000 in a Costa Rican tropical rainforest. We explored environmental drivers of this change and examined the contributions of ecosystem respiration (RE) and gross primary production (GPP) to this weakened carbon sink. For 1998-2000, we estimated RE using chamber-based respiration measurements, and we estimated GPP in two ways: using (1) the canopy process model MAESTRA, and (2) combined eddy covariance and chamber respiration data. MAESTRA-estimated GPP did not statistically differ from GPP estimated using approach 2, but was ˜ 28% greater than published GPP estimates for the same site and years using eddy covariance data only. A 7% increase in RE (primarily increased soil respiration) and a 10% reduction in GPP contributed equally to the difference in NEP between ENSO year 1998 and non-ENSO year 2000. A warming and drying climate for tropical forests may yield a weakened carbon sink from both decreased GPP and increased RE. Understanding physiological acclimation will be critical for the large carbon stores in these ecosystems.


Assuntos
Sequestro de Carbono , El Niño Oscilação Sul , Fotossíntese , Floresta Úmida , Respiração Celular , Ritmo Circadiano/fisiologia , Clima , Ecossistema , Modelos Teóricos , Estações do Ano , Árvores/crescimento & desenvolvimento , Árvores/fisiologia
5.
Plant Cell Environ ; 40(9): 1874-1886, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28556410

RESUMO

The Ball-Berry (BB) model of stomatal conductance (gs ) is frequently coupled with a model of assimilation to estimate water and carbon exchanges in plant canopies. The empirical slope (m) and 'residual' gs (g0 ) parameters of the BB model influence transpiration estimates, but the time-intensive nature of measurement limits species-specific data on seasonal and stress responses. We measured m and g0 seasonally and under different water availability for maize and sunflower. The statistical method used to estimate parameters impacted values nominally when inter-plant variability was low, but had substantial impact with larger inter-plant variability. Values for maize (m = 4.53 ± 0.65; g0  = 0.017 ± 0.016 mol m-2 s-1 ) were 40% higher than other published values. In maize, we found no seasonal changes in m or g0 , supporting the use of constant seasonal values, but water stress reduced both parameters. In sunflower, inter-plant variability of m and g0 was large (m = 8.84 ± 3.77; g0  = 0.354 ± 0.226 mol m-2 s-1 ), presenting a challenge to clear interpretation of seasonal and water stress responses - m values were stable seasonally, even as g0 values trended downward, and m values trended downward with water stress while g0 values declined substantially.


Assuntos
Helianthus/fisiologia , Modelos Biológicos , Estações do Ano , Estresse Fisiológico , Água/fisiologia , Zea mays/fisiologia , Dessecação , Modelos Lineares , Estômatos de Plantas/fisiologia
6.
Plant Cell Environ ; 40(7): 1214-1238, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27925232

RESUMO

A common approach for estimating fluxes of CO2 and water in canopy models is to couple a model of photosynthesis (An ) to a semi-empirical model of stomatal conductance (gs ) such as the widely validated and utilized Ball-Berry (BB) model. This coupling provides an effective way of predicting transpiration at multiple scales. However, the designated value of the slope parameter (m) in the BB model impacts transpiration estimates. There is a lack of consensus regarding how m varies among species or plant functional types (PFTs) or in response to growth conditions. Literature values are highly variable, with inter-species and intra-species variations of >100%, and comparisons are made more difficult because of differences in collection techniques. This paper reviews the various methods used to estimate m and highlights how variations in measurement techniques or the data utilized can influence the resultant m. Additionally, this review summarizes the reported responses of m to [CO2 ] and water stress, collates literature values by PFT and compiles nearly three decades of values into a useful compendium.


Assuntos
Fotossíntese/fisiologia , Estômatos de Plantas/fisiologia , Dióxido de Carbono/metabolismo , Modelos Biológicos
7.
Plant Cell Environ ; 38(4): 710-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25124388

RESUMO

Transpiration is controlled by evaporative demand and stomatal conductance (gs ), and there can be substantial genetic variation in gs . A key parameter in empirical models of transpiration is minimum stomatal conductance (g0 ), a trait that can be measured and has a large effect on gs and transpiration. In Arabidopsis thaliana, g0 exhibits both environmental and genetic variation, and quantitative trait loci (QTL) have been mapped. We used this information to create a genetically parameterized empirical model to predict transpiration of genotypes. For the parental lines, this worked well. However, in a recombinant inbred population, the predictions proved less accurate. When based only upon their genotype at a single g0 QTL, genotypes were less distinct than our model predicted. Follow-up experiments indicated that both genotype by environment interaction and a polygenic inheritance complicate the application of genetic effects into physiological models. The use of ecophysiological or 'crop' models for predicting transpiration of novel genetic lines will benefit from incorporating further knowledge of the genetic control and degree of independence of core traits/parameters underlying gs variation.


Assuntos
Arabidopsis/fisiologia , Variação Genética , Transpiração Vegetal/fisiologia , Locos de Características Quantitativas/genética , Arabidopsis/genética , Secas , Meio Ambiente , Genótipo , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Especificidade da Espécie , Água/fisiologia
8.
Ecol Appl ; 25(8): 2349-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26910960

RESUMO

Photosynthetic capacity, determined by light harvesting and carboxylation reactions, is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models (ESMs) at a reference temperature, it is either a fixed value for a given plant functional type or derived from a linear function of leaf nitrogen content. In this study, we conducted a comprehensive analysis that considered correlations of environmental factors with photosynthetic capacity as determined by maximum carboxylation (V(cm)) rate scaled to 25 degrees C (i.e., V(c),25; µmol CO2 x m(-2)x s(-1)) and maximum electron transport rate (J(max)) scaled to 25 degrees C (i.e., J25; µmol electron x m(-2) x s(-1)) at the global scale. Our results showed that the percentage of variation in observed V(c),25 and J25 explained jointly by the environmental factors (i.e., day length, radiation, temperature, and humidity) were 2-2.5 times and 6-9 times of that explained by area-based leaf nitrogen content, respectively. Environmental factors influenced photosynthetic capacity mainly through photosynthetic nitrogen use efficiency, rather than through leaf nitrogen content. The combination of leaf nitrogen content and environmental factors was able to explain -56% and -66% of the variation in V(c),25 and J25 at the global scale, respectively. Our analyses suggest that model projections of plant photosynthetic capacity and hence land-atmosphere exchange under changing climatic conditions could be substantially improved if environmental factors are incorporated into algorithms used to parameterize photosynthetic capacity in ESMs.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Fotossíntese/fisiologia , Plantas/metabolismo , Modelos Biológicos , Nitrogênio , Folhas de Planta/química , Folhas de Planta/metabolismo , Incerteza
9.
Proc Natl Acad Sci U S A ; 109(22): 8612-7, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22586103

RESUMO

Although temperature is an important driver of seasonal changes in photosynthetic physiology, photoperiod also regulates leaf activity. Climate change will extend growing seasons if temperature cues predominate, but photoperiod-controlled species will show limited responsiveness to warming. We show that photoperiod explains more seasonal variation in photosynthetic activity across 23 tree species than temperature. Although leaves remain green, photosynthetic capacity peaks just after summer solstice and declines with decreasing photoperiod, before air temperatures peak. In support of these findings, saplings grown at constant temperature but exposed to an extended photoperiod maintained high photosynthetic capacity, but photosynthetic activity declined in saplings experiencing a naturally shortening photoperiod; leaves remained equally green in both treatments. Incorporating a photoperiodic correction of photosynthetic physiology into a global-scale terrestrial carbon-cycle model significantly improves predictions of seasonal atmospheric CO(2) cycling, demonstrating the benefit of such a function in coupled climate system models. Accounting for photoperiod-induced seasonality in photosynthetic parameters reduces modeled global gross primary production 2.5% (∼4 PgC y(-1)), resulting in a >3% (∼2 PgC y(-1)) decrease of net primary production. Such a correction is also needed in models estimating current carbon uptake based on remotely sensed greenness. Photoperiod-associated declines in photosynthetic capacity could limit autumn carbon gain in forests, even if warming delays leaf senescence.


Assuntos
Ciclo do Carbono/fisiologia , Fotoperíodo , Fotossíntese/fisiologia , Estações do Ano , Árvores/fisiologia , Algoritmos , Modelos Biológicos , Folhas de Planta/fisiologia , Temperatura
10.
Photosynth Res ; 119(1-2): 49-64, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23408254

RESUMO

Most models of photosynthetic activity assume that temperature is the dominant control over physiological processes. Recent studies have found, however, that photoperiod is a better descriptor than temperature of the seasonal variability of photosynthetic physiology at the leaf scale. Incorporating photoperiodic control into global models consequently improves their representation of the seasonality and magnitude of atmospheric CO2 concentration. The role of photoperiod versus that of temperature in controlling the seasonal variability of photosynthetic function at the canopy scale remains unexplored. We quantified the seasonal variability of ecosystem-level light response curves using nearly 400 site years of eddy covariance data from over eighty Free Fair-Use sites in the FLUXNET database. Model parameters describing maximum canopy CO2 uptake and the initial slope of the light response curve peaked after peak temperature in about 2/3 of site years examined, emphasizing the important role of temperature in controlling seasonal photosynthetic function. Akaike's Information Criterion analyses indicated that photoperiod should be included in models of seasonal parameter variability in over 90% of the site years investigated here, demonstrating that photoperiod also plays an important role in controlling seasonal photosynthetic function. We also performed a Granger causality analysis on both gross ecosystem productivity (GEP) and GEP normalized by photosynthetic photon flux density (GEP n ). While photoperiod Granger-caused GEP and GEP n in 99 and 92% of all site years, respectively, air temperature Granger-caused GEP in a mere 32% of site years but Granger-caused GEP n in 81% of all site years. Results demonstrate that incorporating photoperiod may be a logical step toward improving models of ecosystem carbon uptake, but not at the expense of including enzyme kinetic-based temperature constraints on canopy-scale photosynthesis.


Assuntos
Carbono/metabolismo , Ecossistema , Modelos Teóricos , Fotoperíodo , Fotossíntese/fisiologia , Clima , Luz , Modelos Biológicos , Estações do Ano , Temperatura , Tempo (Meteorologia)
11.
Plants (Basel) ; 13(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38931102

RESUMO

We investigated the effect of supplemental CO2, gibberellic acid (GA3), and light on the quality and yield of Humulus lupulus L. strobili (cones). When applied separately, CO2 and light increased the yield by 22% and 43%, respectively, and had a significant effect on the components of cone mass and quality. Exogenous GA3 increased flower set; however, the yield decreased by approximately 33%. Combining CO2, GA3, and light, and any combination thereof, resulted in significant increases in flower set and cone yield enhancement compared to separate applications. A synergistic effect occurred when some factors were combined. For example, the combination of CO2 and light resulted in a yield increase of approximately 122%. The combination of all three resources, CO2, GA3, and light, resulted in an approximate 185% yield increase per plant. Thus, in comparison to the addition of one supplementary resource, a greater increase in yield resulted from the combination of two or more supplemental resources. Flower set stimulation due to GA3 decreased cone alpha- and beta-acid quality attributes, unless combined with CO2 and light as additional carbohydrate-generating resources. Additional research is needed to close the hop yield gap between current hop yields and the achievement of the plant's genetic potential.

12.
BMC Genomics ; 14: 655, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24063355

RESUMO

BACKGROUND: The identification of the loci and specific alleles underlying variation in quantitative traits is an important goal for evolutionary biologists and breeders. Despite major advancements in genomics technology, moving from QTL to causal alleles remains a major challenge in genetics research. Near-isogenic lines are the ideal raw material for QTL validation, refinement of QTL location and, ultimately, gene discovery. RESULTS: In this study, a population of 75 Arabidopsis thaliana near-isogenic lines was developed from an existing recombinant inbred line (RIL) population derived from a cross between physiologically divergent accessions Kas-1 and Tsu-1. First, a novel algorithm was developed to utilize genome-wide marker data in selecting RILs fully isogenic to Kas-1 for a single chromosome. Seven such RILs were used in 2 generations of crossing to Tsu-1 to create BC1 seed. BC1 plants were genotyped with SSR markers so that lines could be selected that carried Kas-1 introgressions, resulting in a population carrying chromosomal introgressions spanning the genome. BC1 lines were genotyped with 48 genome-wide SSRs to identify lines with a targeted Kas-1 introgression and the fewest genomic introgressions elsewhere. 75 such lines were selected and genotyped at an additional 41 SNP loci and another 930 tags using 2b-RAD genotyping by sequencing. The final population carried an average of 1.35 homozygous and 2.49 heterozygous introgressions per line with average introgression sizes of 5.32 and 5.16 Mb, respectively. In a simple case study, we demonstrate the advantage of maintaining heterozygotes in our library whereby fine-mapping efforts are conducted simply by self-pollination. Crossovers in the heterozygous interval during this single selfing generation break the introgression into smaller, homozygous fragments (sub-NILs). Additionally, we utilize a homozygous NIL for validation of a QTL underlying stomatal conductance, a low heritability trait. CONCLUSIONS: The present results introduce a new and valuable resource to the Brassicaceae research community that enables rapid fine-mapping of candidate loci in parallel with QTL validation. These attributes along with dense marker coverage and genome-wide chromosomal introgressions make this population an ideal starting point for discovery of genes underlying important complex traits of agricultural and ecological significance.


Assuntos
Arabidopsis/genética , Biblioteca Gênica , Endogamia , Característica Quantitativa Herdável , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Ontologia Genética , Marcadores Genéticos , Genoma de Planta/genética , Genótipo , Técnicas de Genotipagem , Heterozigoto , Homozigoto , Escore Lod , Mapeamento Físico do Cromossomo , Polimorfismo Genético , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes
13.
Plants (Basel) ; 12(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37176874

RESUMO

The economic value of Humulus lupulus L. (hop) is recognized, but the primary metabolism of the hop strobilus has not been quantified in response to elevated CO2. The photosynthetic contribution of hop strobili to reproductive effort may be important for growth and crop yield. This component could be useful in hop breeding for enhanced performance in response to environmental signals. The objective of this study was to assess strobilus gas exchange, specifically the response to CO2 and light. Hop strobili were measured under controlled environment conditions to assess the organ's contribution to carbon assimilation and lupulin gland filling during the maturation phase. Leaf defoliation and bract photosynthetic inhibition were deployed to investigate the glandular trichome lupulin carbon source. Strobilus-level physiological response parameters were extrapolated to estimate strobilus-specific carbon budgets under current and future atmospheric CO2 conditions. Under ambient atmospheric CO2, the strobilus carbon balance was 92% autonomous. Estimated strobilus carbon uptake increased by 21% from 415 to 600 µmol mol-1 CO2, 14% from 600 to 900 µmol mol-1, and another 8%, 4%, and 3% from 900 to 1200, 1500, and 1800 µmol mol-1, respectively. We show that photosynthetically active bracts are a major source of carbon assimilation and that leaf defoliation had no effect on lupulin production or strobilus photosynthesis, whereas individual bract photosynthesis was linked to lupulin production. In conclusion, hop strobili can self-generate enough carbon assimilation under elevated CO2 conditions to function autonomously, and strobilus bracts are the primary carbon source for lupulin biosynthesis.

14.
Plants (Basel) ; 12(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37653947

RESUMO

The primary metabolism and respiration of the hop strobilus has not been quantified in response to daily temperature fluctuations. The objective of this study was to assess strobilus gas exchange, specifically the response to temperature fluctuations. Hop strobilus were measured under controlled environment conditions to assess the organ's contribution to carbon assimilation and respiration during the maturation phase. Strobilus-specific daily carbon budgets were estimated in response to temperature fluctuation. The optimal temperature for net carbon gain occurred at 15.7 °C. Estimated strobilus carbon uptake decreased approximately 41% per 5 °C increase in temperature above 20 °C. Daily temperatures within 10-27 °C resulted in a net positive strobilus daily carbon balance, whereas temperature increases beyond 27 °C increasingly exhaust strobilus carbon reserves. The Q10 temperature coefficient (the rate respiration increases every 10 °C rise in temperature) approximately doubled per 10 °C rise in temperature from 7-40 °C (1.94-2) with slightly reduced values at lower temperatures. In conclusion, we show that photosynthetically active bracts maintain a positive strobilus carbon balance at moderate temperatures and as mean daily temperatures progressively exceed 27 °C, strobilus net carbon reserves are precipitously exhausted due to ever-increasing respiration rates.

15.
Planta ; 234(5): 1045-54, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21710199

RESUMO

We investigated responses of plant growth rate, hydraulic resistance, and xylem cavitation in scion-rootstock-combinations of Malus domestica L. cv. Honeycrisp scions grafted onto a high-shoot vigor (HSV) rootstock, (semi-dwarfing Malling111), or onto a low-shoot vigor (LSV) rootstock, (dwarfing Budagovsky 9), in response to substrate moisture limitation. Adjustments in xylem vessel diameter and frequency were related to hydraulic resistance measurements for high- versus low- vigor apple trees. We observed a greater tolerance to water deficit in the high-shoot compared to the low-shoot vigor plants under water deficit as evidenced by increased growth in several plant organs, and greater scion anatomical response to limited water availability with ca. 25% increased vessel frequency and ca. 28% narrower current season xylem ring width. Whereas water limitation resulted in greater graft union hydraulic resistance of high-shoot vigor trees, the opposite was true when water was not limiting. The graft union of the low-shoot vigor rootstock exhibited higher hydraulic resistance under well-watered conditions. Scions of high-shoot vigor rootstocks had fewer embolisms at low plant water status compared to scions of low-shoot vigor rootstocks, presumably as a result of large differences in xylem vessel diameter. Our results demonstrated that anatomical differences were related to shifts in hydraulic conductivity and cavitation events, a direct result of grafting, under limited soil water.


Assuntos
Secas , Malus/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Xilema/crescimento & desenvolvimento , Adaptação Fisiológica , Transporte Biológico , Malus/anatomia & histologia , Malus/metabolismo , Malus/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Solo , Estresse Fisiológico , Água/metabolismo , Xilema/anatomia & histologia , Xilema/metabolismo , Xilema/fisiologia
16.
J Exp Bot ; 62(12): 4295-307, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21617246

RESUMO

A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per unit leaf area) to assess how transpiration might be affected by the spatial distribution of foliage properties. For example, when physiological differences were accounted for, differences in leaf width among A. rubrum L. genotypes resulted in a 25% difference in transpiration. An in silico within-canopy sensitivity analysis was conducted over the range of genotype parameter variation observed and under different climate forcing conditions. The analysis revealed that seven of 16 leaf traits had a ≥5% impact on transpiration predictions. Under sparse foliage conditions, comparisons of the present findings with previous studies were in agreement that parameters such as the maximum Rubisco-limited rate of photosynthesis can explain ∼20% of the variability in predicted transpiration. However, the spatial analysis shows how such parameters can decrease or change in importance below the uppermost canopy layer. Alternatively, model sensitivity to leaf width and minimum stomatal conductance was continuous along a vertical canopy depth profile. Foremost, transpiration sensitivity to an observed range of morphological and physiological parameters is examined and the spatial sensitivity of transpiration model predictions to vertical variations in microclimate and foliage density is identified to reduce the uncertainty of current transpiration predictions.


Assuntos
Acer/anatomia & histologia , Acer/fisiologia , Modelos Biológicos , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Acer/genética , Fenômenos Biofísicos , Simulação por Computador , Genótipo
17.
Sci Rep ; 11(1): 9017, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907286

RESUMO

Three different cultivars of Humulus lupulus L. were subjected to a regime of internode touch and bending under greenhouse conditions. Experiments were performed to assess intraspecific variability in plant mechanosensing, flower quality, and yield to quantify the thigmomorphogenic impact on plant compactness and flowering performance. Touching and/or touching plus bending the plant shoot internodes located in the apical meristem zone decreased internode elongation and increased width. The growth responses were due partly to touching and/or touching plus bending perturbation, 25.6% and 28% respectively. Growth of new tissue within the local apical portion of the bine continued to remain mechanosensitive. The number of nodes and female flowers produced was unaffected by either type of mechanical stress. The study provides evidence that thigmomorphogenic cues can be used as a hop crop management tool to increase bine compactness and increase node density per unit area. The findings have broad implications for hop production; production can more readily take place in a confined greenhouse space with the aid of mechanical stimulation to control plant growth without sacrificing yield or flower quality.


Assuntos
Humulus/crescimento & desenvolvimento , Mecanotransdução Celular , Flores/crescimento & desenvolvimento , Manejo de Espécimes
18.
Nat Commun ; 12(1): 5549, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545076

RESUMO

Irrigation is an important adaptation to reduce crop yield loss due to water stress from both soil water deficit (low soil moisture) and atmospheric aridity (high vapor pressure deficit, VPD). Traditionally, irrigation has primarily focused on soil water deficit. Observational evidence demonstrates that stomatal conductance is co-regulated by soil moisture and VPD from water supply and demand aspects. Here we use a validated hydraulically-driven ecosystem model to reproduce the co-regulation pattern. Specifically, we propose a plant-centric irrigation scheme considering water supply-demand dynamics (SDD), and compare it with soil-moisture-based irrigation scheme (management allowable depletion, MAD) for continuous maize cropping systems in Nebraska, United States. We find that, under current climate conditions, the plant-centric SDD irrigation scheme combining soil moisture and VPD, could significantly reduce irrigation water use (-24.0%) while maintaining crop yields, and increase economic profits (+11.2%) and irrigation water productivity (+25.2%) compared with MAD, thus SDD could significantly improve water sustainability.

19.
Plants (Basel) ; 9(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092905

RESUMO

We examined the aging of leaves prior to abscission and the consequences for estimating whole-crown primary production in Cannabis sativa L. (hemp). Leaves at three vertical positions in hemp crowns were examined from initial full leaf expansion until 42 days later. Photosynthetic capacity decreased as leaves aged regardless of crown position, light intensity, or photoperiod. Although leaves remained green, the photosynthetic capacity declined logarithmically to values of 50% and 25% of the maximum 9 and 25 days later, respectively. Plants grown under +450 µmol m-2 s-1 supplemental photosynthetically active radiation or enriched diffuse light responded similarly; there was no evidence that photoperiod or enriched diffuse light modified the gas exchange pattern. At approximately 14 days after full leaf expansion, leaf light levels >500 µmol m-2 s-1 decreased photosynthesis, which resulted in ≥10% lower maximum electron transport rate at ≥ 20 days of growth period. Furthermore, leaves were saturated at lower light levels as leaf age progressed (≤500 µmol m-2 s-1). Incorporating leaf age corrections of photosynthetic physiology is needed when estimating hemp primary production.

20.
J Exp Bot ; 60(13): 3665-76, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19561047

RESUMO

Models seldom consider the effect of leaf-level biochemical acclimation to temperature when scaling forest water use. Therefore, the dependence of transpiration on temperature acclimation was investigated at the within-crown scale in climatically contrasting genotypes of Acer rubrum L., cv. October Glory (OG) and Summer Red (SR). The effects of temperature acclimation on intracanopy gradients in transpiration over a range of realistic forest growth temperatures were also assessed by simulation. Physiological parameters were applied, with or without adjustment for temperature acclimation, to account for transpiration responses to growth temperature. Both types of parameterization were scaled up to stand transpiration (expressed per unit leaf area) with an individual tree model (MAESTRA) to assess how transpiration might be affected by spatial and temporal distributions of foliage properties. The MAESTRA model performed well, but its reproducibility was dependent on physiological parameters acclimated to daytime temperature. Concordance correlation coefficients between measured and predicted transpiration were higher (0.95 and 0.98 versus 0.87 and 0.96) when model parameters reflected acclimated growth temperature. In response to temperature increases, the southern genotype (SR) transpiration responded more than the northern (OG). Conditions of elevated long-term temperature acclimation further separate their transpiration differences. Results demonstrate the importance of accounting for leaf-level physiological adjustments that are sensitive to microclimate changes and the use of provenance-, ecotype-, and/or genotype-specific parameter sets, two components likely to improve the accuracy of site-level and ecosystem-level estimates of transpiration flux.


Assuntos
Acer/fisiologia , Folhas de Planta/fisiologia , Transpiração Vegetal , Acer/química , Cinética , Folhas de Planta/química , Estações do Ano , Temperatura , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA