Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Bioinformatics ; 38(Suppl_2): ii113-ii119, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36124784

RESUMO

MOTIVATION: While it has been well established that drugs affect and help patients differently, personalized drug response predictions remain challenging. Solutions based on single omics measurements have been proposed, and networks provide means to incorporate molecular interactions into reasoning. However, how to integrate the wealth of information contained in multiple omics layers still poses a complex problem. RESULTS: We present DrDimont, Drug response prediction from Differential analysis of multi-omics networks. It allows for comparative conclusions between two conditions and translates them into differential drug response predictions. DrDimont focuses on molecular interactions. It establishes condition-specific networks from correlation within an omics layer that are then reduced and combined into heterogeneous, multi-omics molecular networks. A novel semi-local, path-based integration step ensures integrative conclusions. Differential predictions are derived from comparing the condition-specific integrated networks. DrDimont's predictions are explainable, i.e. molecular differences that are the source of high differential drug scores can be retrieved. We predict differential drug response in breast cancer using transcriptomics, proteomics, phosphosite and metabolomics measurements and contrast estrogen receptor positive and receptor negative patients. DrDimont performs better than drug prediction based on differential protein expression or PageRank when evaluating it on ground truth data from cancer cell lines. We find proteomic and phosphosite layers to carry most information for distinguishing drug response. AVAILABILITY AND IMPLEMENTATION: DrDimont is available on CRAN: https://cran.r-project.org/package=DrDimont. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias da Mama , Software , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Proteômica , Receptores de Estrogênio , Transcriptoma
2.
Exp Cell Res ; 409(2): 112933, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34793773

RESUMO

The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. Muscle stem cells can proliferate, they can generate differentiating cells, or they self-renew to produce new stem cells. Notch signaling plays a crucial role in this process. Recent studies revealed that expression of the Notch effector HES1 oscillates in activated muscle stem cells. The oscillatory expression of HES1 periodically represses transcription from the genes encoding the myogenic transcription factor MYOD and the Notch ligand DLL1, thereby driving MYOD and DLL1 oscillations. This oscillatory network allows muscle progenitor cells and activated muscle stem cells to remain in a proliferative and 'undecided' state, in which they can either differentiate or self-renew. When HES1 is downregulated, MYOD oscillations become unstable and are replaced by sustained expression, which drives the cells into terminal differentiation. During development and regeneration, proliferating stem cells contact each other and the stability of the oscillatory expression depends on regular DLL1 inputs provided by neighboring cells. In such communities of cells that receive and provide Notch signals, the appropriate timing of DLL1 inputs is important, as sustained DLL1 cannot replace oscillatory DLL1. Thus, in cell communities, DLL1 oscillations ensure the appropriate balance between self-renewal and differentiation. In summary, oscillations in myogenic cells are an important example of dynamic gene expression determining cell fate.


Assuntos
Diferenciação Celular , Músculo Esquelético/citologia , Periodicidade , Receptores Notch/metabolismo , Células-Tronco/citologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Humanos , Ligantes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Receptores Notch/genética , Células-Tronco/metabolismo , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo
3.
Int J Cancer ; 148(5): 1219-1232, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33284994

RESUMO

Here we sought metabolic alterations specifically associated with MYCN amplification as nodes to indirectly target the MYCN oncogene. Liquid chromatography-mass spectrometry-based proteomics identified seven proteins consistently correlated with MYCN in proteomes from 49 neuroblastoma biopsies and 13 cell lines. Among these was phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in de novo serine synthesis. MYCN associated with two regions in the PHGDH promoter, supporting transcriptional PHGDH regulation by MYCN. Pulsed stable isotope-resolved metabolomics utilizing 13 C-glucose labeling demonstrated higher de novo serine synthesis in MYCN-amplified cells compared to cells with diploid MYCN. An independence of MYCN-amplified cells from exogenous serine and glycine was demonstrated by serine and glycine starvation, which attenuated nucleotide pools and proliferation only in cells with diploid MYCN but did not diminish these endpoints in MYCN-amplified cells. Proliferation was attenuated in MYCN-amplified cells by CRISPR/Cas9-mediated PHGDH knockout or treatment with PHGDH small molecule inhibitors without affecting cell viability. PHGDH inhibitors administered as single-agent therapy to NOG mice harboring patient-derived MYCN-amplified neuroblastoma xenografts slowed tumor growth. However, combining a PHGDH inhibitor with the standard-of-care chemotherapy drug, cisplatin, revealed antagonism of chemotherapy efficacy in vivo. Emergence of chemotherapy resistance was confirmed in the genetic PHGDH knockout model in vitro. Altogether, PHGDH knockout or inhibition by small molecules consistently slows proliferation, but stops short of killing the cells, which then establish resistance to classical chemotherapy. Although PHGDH inhibition with small molecules has produced encouraging results in other preclinical cancer models, this approach has limited attractiveness for patients with neuroblastoma.


Assuntos
Amplificação de Genes , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Feminino , Glicina/metabolismo , Humanos , Camundongos , Neuroblastoma/genética , Serina/metabolismo
4.
PLoS Comput Biol ; 12(12): e1005298, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28027301

RESUMO

Oscillations occur in a wide variety of cellular processes, for example in calcium and p53 signaling responses, in metabolic pathways or within gene-regulatory networks, e.g. the circadian system. Since it is of central importance to understand the influence of perturbations on the dynamics of these systems a number of experimental and theoretical studies have examined their robustness. The period of circadian oscillations has been found to be very robust and to provide reliable timing. For intracellular calcium oscillations the period has been shown to be very sensitive and to allow for frequency-encoded signaling. We here apply a comprehensive computational approach to study the robustness of period and amplitude of oscillatory systems. We employ different prototype oscillator models and a large number of parameter sets obtained by random sampling. This framework is used to examine the effect of three design principles on the sensitivities towards perturbations of the kinetic parameters. We find that a prototype oscillator with negative feedback has lower period sensitivities than a prototype oscillator relying on positive feedback, but on average higher amplitude sensitivities. For both oscillator types, the use of Michaelis-Menten instead of mass action kinetics in all degradation and conversion reactions leads to an increase in period as well as amplitude sensitivities. We observe moderate changes in sensitivities if replacing mass conversion reactions by purely regulatory reactions. These insights are validated for a set of established models of various cellular rhythms. Overall, our work highlights the importance of reaction kinetics and feedback type for the variability of period and amplitude and therefore for the establishment of predictive models.


Assuntos
Relógios Biológicos/fisiologia , Sinalização do Cálcio/fisiologia , Fenômenos Fisiológicos Celulares , Ritmo Circadiano/fisiologia , Modelos Biológicos , Oscilometria/métodos , Animais , Simulação por Computador , Humanos , Cinética
5.
EMBO J ; 31(1): 187-200, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21989385

RESUMO

The extent of proteolytic processing of the amyloid precursor protein (APP) into neurotoxic amyloid-ß (Aß) peptides is central to the pathology of Alzheimer's disease (AD). Accordingly, modifiers that increase Aß production rates are risk factors in the sporadic form of AD. In a novel systems biology approach, we combined quantitative biochemical studies with mathematical modelling to establish a kinetic model of amyloidogenic processing, and to evaluate the influence by SORLA/SORL1, an inhibitor of APP processing and important genetic risk factor. Contrary to previous hypotheses, our studies demonstrate that secretases represent allosteric enzymes that require cooperativity by APP oligomerization for efficient processing. Cooperativity enables swift adaptive changes in secretase activity with even small alterations in APP concentration. We also show that SORLA prevents APP oligomerization both in cultured cells and in the brain in vivo, eliminating the preferred form of the substrate and causing secretases to switch to a less efficient non-allosteric mode of action. These data represent the first mathematical description of the contribution of genetic risk factors to AD substantiating the relevance of subtle changes in SORLA levels for amyloidogenic processing as proposed for patients carrying SORL1 risk alleles.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Células CHO , Cricetinae , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , Modelos Biológicos
6.
PeerJ Comput Sci ; 9: e1291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346513

RESUMO

The detection of communities in graph datasets provides insight about a graph's underlying structure and is an important tool for various domains such as social sciences, marketing, traffic forecast, and drug discovery. While most existing algorithms provide fast approaches for community detection, their results usually contain strictly separated communities. However, most datasets would semantically allow for or even require overlapping communities that can only be determined at much higher computational cost. We build on an efficient algorithm, Fox, that detects such overlapping communities. Fox measures the closeness of a node to a community by approximating the count of triangles which that node forms with that community. We propose LazyFox, a multi-threaded adaptation of the Fox algorithm, which provides even faster detection without an impact on community quality. This allows for the analyses of significantly larger and more complex datasets. LazyFox enables overlapping community detection on complex graph datasets with millions of nodes and billions of edges in days instead of weeks. As part of this work, LazyFox's implementation was published and is available as a tool under an MIT licence at https://github.com/TimGarrels/LazyFox.

7.
Metabolites ; 12(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35629912

RESUMO

The investigation of metabolic fluxes and metabolite distributions within cells by means of tracer molecules is a valuable tool to unravel the complexity of biological systems. Technological advances in mass spectrometry (MS) technology such as atmospheric pressure chemical ionization (APCI) coupled with high resolution (HR), not only allows for highly sensitive analyses but also broadens the usefulness of tracer-based experiments, as interesting signals can be annotated de novo when not yet present in a compound library. However, several effects in the APCI ion source, i.e., fragmentation and rearrangement, lead to superimposed mass isotopologue distributions (MID) within the mass spectra, which need to be corrected during data evaluation as they will impair enrichment calculation otherwise. Here, we present and evaluate a novel software tool to automatically perform such corrections. We discuss the different effects, explain the implemented algorithm, and show its application on several experimental datasets. This adjustable tool is available as an R package from CRAN.

8.
PLoS One ; 16(5): e0250506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33979358

RESUMO

The rapid emergence of online targeted political advertising has raised concerns over data privacy and what the government's response should be. This paper tested and confirmed the hypothesis that public attitudes toward stricter regulation of online targeted political advertising are partially motivated by partisan self-interest. We conducted an experiment using an online survey of 1549 Americans who identify as either Democrats or Republicans. Our findings show that Democrats and Republicans believe that online targeted political advertising benefits the opposing party. This belief is based on their conviction that their political opponents are more likely to be mobilized by online targeted political advertising than are supporters of their own party. We exogenously manipulated partisan self-interest considerations of a random subset of participants by truthfully informing them that, in the past, online targeted political advertising has benefited Republicans. Our findings show that Republicans informed about this had less favorable attitudes toward regulation than did their uninformed co-partisans. This suggests that Republicans' attitudes regarding stricter regulation are based not solely on concerns about privacy violations, but also, in part, are caused by beliefs about partisan advantage. The results imply that people are willing to accept violations of their privacy if their preferred party benefits from the use of online targeted political advertising.


Assuntos
Publicidade , Opinião Pública , Humanos , Política , Estados Unidos
9.
Nat Commun ; 12(1): 1318, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637744

RESUMO

Cell-cell interactions mediated by Notch are critical for the maintenance of skeletal muscle stem cells. However, dynamics, cellular source and identity of functional Notch ligands during expansion of the stem cell pool in muscle growth and regeneration remain poorly characterized. Here we demonstrate that oscillating Delta-like 1 (Dll1) produced by myogenic cells is an indispensable Notch ligand for self-renewal of muscle stem cells in mice. Dll1 expression is controlled by the Notch target Hes1 and the muscle regulatory factor MyoD. Consistent with our mathematical model, our experimental analyses show that Hes1 acts as the oscillatory pacemaker, whereas MyoD regulates robust Dll1 expression. Interfering with Dll1 oscillations without changing its overall expression level impairs self-renewal, resulting in premature differentiation of muscle stem cells during muscle growth and regeneration. We conclude that the oscillatory Dll1 input into Notch signaling ensures the equilibrium between self-renewal and differentiation in myogenic cell communities.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia , Músculos/metabolismo , Células-Tronco/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Desenvolvimento Muscular/genética , Mutação , Proteína MyoD/genética , Proteína MyoD/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição HES-1/metabolismo , Transcriptoma
10.
Cancers (Basel) ; 13(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652667

RESUMO

MACC1 is a prognostic and predictive metastasis biomarker for more than 20 solid cancer entities. However, its role in cancer metabolism is not sufficiently explored. Here, we report on how MACC1 impacts the use of glucose, glutamine, lactate, pyruvate and fatty acids and show the comprehensive analysis of MACC1-driven metabolic networks. We analyzed concentration-dependent changes in nutrient use, nutrient depletion, metabolic tracing employing 13C-labeled substrates, and in vivo studies. We found that MACC1 permits numerous effects on cancer metabolism. Most of those effects increased nutrient uptake. Furthermore, MACC1 alters metabolic pathways by affecting metabolite production or turnover from metabolic substrates. MACC1 supports use of glucose, glutamine and pyruvate via their increased depletion or altered distribution within metabolic pathways. In summary, we demonstrate that MACC1 is an important regulator of metabolism in cancer cells.

11.
Sci Rep ; 10(1): 7157, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32346009

RESUMO

N-Myc is a transcription factor that is aberrantly expressed in many tumor types and is often correlated with poor patient prognosis. Recently, several lines of evidence pointed to the fact that oncogenic activation of Myc family proteins is concomitant with reprogramming of tumor cells to cope with an enhanced need for metabolites during cell growth. These adaptions are driven by the ability of Myc proteins to act as transcriptional amplifiers in a tissue-of-origin specific manner. Here, we describe the effects of N-Myc overexpression on metabolic reprogramming in neuroblastoma cells. Ectopic expression of N-Myc induced a glycolytic switch that was concomitant with enhanced sensitivity towards 2-deoxyglucose, an inhibitor of glycolysis. Moreover, global metabolic profiling revealed extensive alterations in the cellular metabolome resulting from overexpression of N-Myc. Limited supply with either of the two main carbon sources, glucose or glutamine, resulted in distinct shifts in steady-state metabolite levels and significant changes in glutathione metabolism. Interestingly, interference with glutamine-glutamate conversion preferentially blocked proliferation of N-Myc overexpressing cells, when glutamine levels were reduced. Thus, our study uncovered N-Myc induction and nutrient levels as important metabolic master switches in neuroblastoma cells and identified critical nodes that restrict tumor cell proliferation.


Assuntos
Proteína Proto-Oncogênica N-Myc/fisiologia , Neuroblastoma/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glucosamina/metabolismo , Glucose/metabolismo , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/terapia
12.
F1000Res ; 8: 465, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31559017

RESUMO

Background: Biological entities such as genes, promoters, mRNA, metabolites or proteins do not act alone, but in concert in their network context. Modules, i.e., groups of nodes with similar topological properties in these networks characterize important biological functions of the underlying biomolecular system. Edges in such molecular networks represent regulatory and physical interactions, and comparing them between conditions provides valuable information on differential molecular mechanisms. However, biological data is inherently noisy and network reduction techniques can propagate errors particularly to the level of edges. We aim to improve the analysis of networks of biological molecules by deriving modules together with edge relevance estimations that are based on global network characteristics.  Methods: We propose to fit the networks to stochastic block models (SBM), a method that has not yet been investigated for the analysis of biomolecular networks. This procedure both delivers modules of the networks and enables the derivation of edge confidence scores. We apply it to correlation-based networks of breast cancer data originating from high-throughput measurements of diverse molecular layers such as transcriptomics, proteomics, and metabolomics. The networks were reduced by thresholding for correlation significance or by requirements on scale-freeness.  Results and discussion: We find that the networks are best represented by the hierarchical version of the SBM, and many of the predicted blocks have a biological meaning according to functional annotation. The edge confidence scores are overall in concordance with the biological evidence given by the measurements. As they are based on global network connectivity characteristics and potential hierarchies within the biomolecular networks are taken into account, they could be used as additional, integrated features in network-based data comparisons. Their tight relationship to edge existence probabilities can be exploited to predict missing or spurious edges in order to improve the network representation of the underlying biological system.


Assuntos
Biologia Computacional , Proteômica , Metabolômica , Proteínas
13.
Cell Syst ; 9(6): 569-579.e7, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31521604

RESUMO

Estimating fold changes of average mRNA and protein molecule counts per cell is the most common way to perform differential expression analysis. However, these gene expression data may be affected by cell division, an often-neglected phenomenon. Here, we develop a quantitative framework that links population-based mRNA and protein measurements to rates of gene expression in single cells undergoing cell division. The equations we derive are easy-to-use and widely robust against biological variability. They integrate multiple "omics" data into a coherent, quantitative description of single-cell gene expression and improve analysis when comparing systems or states with different cell division times. We explore these ideas in the context of resting versus activated B cells. Analyzing differences in protein synthesis rates enables to account for differences in cell division times. We demonstrate that this improves the resolution and hit rate of differential gene expression analysis when compared to analyzing population protein abundances alone.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Linfócitos B/metabolismo , Linfócitos B/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Análise de Dados , Expressão Gênica/genética , Expressão Gênica/fisiologia , Humanos , Modelos Teóricos , Proteínas/metabolismo , RNA Mensageiro/metabolismo
14.
iScience ; 13: 351-370, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30884312

RESUMO

CCAAT enhancer-binding protein beta (C/EBPß) is a pioneer transcription factor that specifies cell differentiation. C/EBPß is intrinsically unstructured, a molecular feature common to many proteins involved in signal processing and epigenetics. The structure of C/EBPß differs depending on alternative translation initiation and multiple post-translational modifications (PTM). Mutation of distinct PTM sites in C/EBPß alters protein interactions and cell differentiation, suggesting that a C/EBPß PTM indexing code determines epigenetic outcomes. Herein, we systematically explored the interactome of C/EBPß using an array technique based on spot-synthesized C/EBPß-derived linear tiling peptides with and without PTM, combined with mass spectrometric proteomic analysis of protein interactions. We identified interaction footprints of ∼1,300 proteins in nuclear extracts, many with chromatin modifying, chromatin remodeling, and RNA processing functions. The results suggest that C/EBPß acts as a multi-tasking molecular switchboard, integrating signal-dependent modifications and structural plasticity to orchestrate interactions with numerous protein complexes directing cell fate and function.

15.
Sci Rep ; 9(1): 4188, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862934

RESUMO

Recent efforts reclassified B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) into more refined subtypes. Nevertheless, outcomes of relapsed BCP-ALL remain unsatisfactory, particularly in adult patients where the molecular basis of relapse is still poorly understood. To elucidate the evolution of relapse in BCP-ALL, we established a comprehensive multi-omics dataset including DNA-sequencing, RNA-sequencing, DNA methylation array and proteome MASS-spec data from matched diagnosis and relapse samples of BCP-ALL patients (n = 50) including the subtypes DUX4, Ph-like and two aneuploid subtypes. Relapse-specific alterations were enriched for chromatin modifiers, nucleotide and steroid metabolism including the novel candidates FPGS, AGBL and ZNF483. The proteome expression analysis unraveled deregulation of metabolic pathways at relapse including the key proteins G6PD, TKT, GPI and PGD. Moreover, we identified a novel relapse-specific gene signature specific for DUX4 BCP-ALL patients highlighting chemotaxis and cytokine environment as a possible driver event at relapse. This study presents novel insights at distinct molecular levels of relapsed BCP-ALL based on a comprehensive multi-omics integrated data set including a valuable proteomics data set. The relapse specific aberrations reveal metabolic signatures on genomic and proteomic levels in BCP-ALL relapse. Furthermore, the chemokine expression signature in DUX4 relapse underscores the distinct status of DUX4-fusion BCP-ALL.


Assuntos
Citocinas , Regulação Leucêmica da Expressão Gênica , Proteínas de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Adolescente , Adulto , Criança , Citocinas/genética , Citocinas/metabolismo , Feminino , Genômica , Humanos , Masculino , Redes e Vias Metabólicas , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/classificação , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Proteômica
16.
J Mol Biol ; 430(12): 1725-1744, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29601786

RESUMO

Huntingtin (HTT) fragments with extended polyglutamine tracts self-assemble into amyloid-like fibrillar aggregates. Elucidating the fibril formation mechanism is critical for understanding Huntington's disease pathology and for developing novel therapeutic strategies. Here, we performed systematic experimental and theoretical studies to examine the self-assembly of an aggregation-prone N-terminal HTT exon-1 fragment with 49 glutamines (Ex1Q49). Using high-resolution imaging techniques such as electron microscopy and atomic force microscopy, we show that Ex1Q49 fragments in cell-free assays spontaneously convert into large, highly complex bundles of amyloid fibrils with multiple ends and fibril branching points. Furthermore, we present experimental evidence that two nucleation mechanisms control spontaneous Ex1Q49 fibrillogenesis: (1) a relatively slow primary fibril-independent nucleation process, which involves the spontaneous formation of aggregation-competent fibrillary structures, and (2) a fast secondary fibril-dependent nucleation process, which involves nucleated branching and promotes the rapid assembly of highly complex fibril bundles with multiple ends. The proposed aggregation mechanism is supported by studies with the small molecule O4, which perturbs early events in the aggregation cascade and delays Ex1Q49 fibril assembly, comprehensive mathematical and computational modeling studies, and seeding experiments with small, preformed fibrillar Ex1Q49 aggregates that promote the assembly of amyloid fibrils. Together, our results suggest that nucleated branching in vitro plays a critical role in the formation of complex fibrillar HTT exon-1 aggregates with multiple ends.


Assuntos
Amiloide/química , Proteína Huntingtina/genética , Mutação , Peptídeos/química , Sistema Livre de Células , Éxons , Humanos , Proteína Huntingtina/química , Microscopia de Força Atômica , Microscopia Eletrônica , Modelos Moleculares , Agregados Proteicos , Estrutura Secundária de Proteína
18.
Cell Rep ; 9(5): 1756-1769, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25482563

RESUMO

The mechanisms that govern proteolytic maturation or complete destruction of the precursor proteins p100 and p105 are fundamental to homeostasis and activation of NF-κB; however, they remain poorly understood. Using mass-spectrometry-based quantitative analysis of noncanonical LTßR-induced signaling, we demonstrate that stimulation induces simultaneous processing of both p100 and p105. The precursors not only form hetero-oligomers but also interact with the ATPase VCP/p97, and their induced proteolysis strictly depends on the signal response domain (SRD) of p100, suggesting that the SRD-targeting proteolytic machinery acts in cis and in trans. Separation of cellular pools by isotope labeling revealed synchronous dynamics of p105 and p100 proteolysis. The generation of p50 and p52 from their precursors depends on functional VCP/p97. We have developed quantitative mathematical models that describe the dynamics of the system and predict that p100-p105 complexes are signal responsive.


Assuntos
Subunidade p50 de NF-kappa B/metabolismo , Subunidade p52 de NF-kappa B/metabolismo , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Cinética , Receptor beta de Linfotoxina/metabolismo , Camundongos , Modelos Biológicos , Fosforilação , Proteólise , Proteína com Valosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA