RESUMO
Human limbs emerge during the fourth post-conception week as mesenchymal buds, which develop into fully formed limbs over the subsequent months1. This process is orchestrated by numerous temporally and spatially restricted gene expression programmes, making congenital alterations in phenotype common2. Decades of work with model organisms have defined the fundamental mechanisms underlying vertebrate limb development, but an in-depth characterization of this process in humans has yet to be performed. Here we detail human embryonic limb development across space and time using single-cell and spatial transcriptomics. We demonstrate extensive diversification of cells from a few multipotent progenitors to myriad differentiated cell states, including several novel cell populations. We uncover two waves of human muscle development, each characterized by different cell states regulated by separate gene expression programmes, and identify musculin (MSC) as a key transcriptional repressor maintaining muscle stem cell identity. Through assembly of multiple anatomically continuous spatial transcriptomic samples using VisiumStitcher, we map cells across a sagittal section of a whole fetal hindlimb. We reveal a clear anatomical segregation between genes linked to brachydactyly and polysyndactyly, and uncover transcriptionally and spatially distinct populations of the mesenchyme in the autopod. Finally, we perform single-cell RNA sequencing on mouse embryonic limbs to facilitate cross-species developmental comparison, finding substantial homology between the two species.
RESUMO
The relationship between the human placenta-the extraembryonic organ made by the fetus, and the decidua-the mucosal layer of the uterus, is essential to nurture and protect the fetus during pregnancy. Extravillous trophoblast cells (EVTs) derived from placental villi infiltrate the decidua, transforming the maternal arteries into high-conductance vessels1. Defects in trophoblast invasion and arterial transformation established during early pregnancy underlie common pregnancy disorders such as pre-eclampsia2. Here we have generated a spatially resolved multiomics single-cell atlas of the entire human maternal-fetal interface including the myometrium, which enables us to resolve the full trajectory of trophoblast differentiation. We have used this cellular map to infer the possible transcription factors mediating EVT invasion and show that they are preserved in in vitro models of EVT differentiation from primary trophoblast organoids3,4 and trophoblast stem cells5. We define the transcriptomes of the final cell states of trophoblast invasion: placental bed giant cells (fused multinucleated EVTs) and endovascular EVTs (which form plugs inside the maternal arteries). We predict the cell-cell communication events contributing to trophoblast invasion and placental bed giant cell formation, and model the dual role of interstitial EVTs and endovascular EVTs in mediating arterial transformation during early pregnancy. Together, our data provide a comprehensive analysis of postimplantation trophoblast differentiation that can be used to inform the design of experimental models of the human placenta in early pregnancy.
Assuntos
Multiômica , Primeiro Trimestre da Gravidez , Trofoblastos , Feminino , Humanos , Gravidez , Movimento Celular , Placenta/irrigação sanguínea , Placenta/citologia , Placenta/fisiologia , Primeiro Trimestre da Gravidez/fisiologia , Trofoblastos/citologia , Trofoblastos/metabolismo , Trofoblastos/fisiologia , Decídua/irrigação sanguínea , Decídua/citologia , Relações Materno-Fetais/fisiologia , Análise de Célula Única , Miométrio/citologia , Miométrio/fisiologia , Diferenciação Celular , Organoides/citologia , Organoides/fisiologia , Células-Tronco/citologia , Transcriptoma , Fatores de Transcrição/metabolismo , Comunicação CelularRESUMO
Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy. We extracted human-specific regulatory programmes that control the development of germline and somatic cell lineages by profiling equivalent developmental stages in mice. In both species, we define the somatic cell states present at the time of sex specification, including the bipotent early supporting population that, in males, upregulates the testis-determining factor SRY and sPAX8s, a gonadal lineage located at the gonadal-mesonephric interface. In females, we resolve the cellular and molecular events that give rise to the first and second waves of granulosa cells that compartmentalize the developing ovary to modulate germ cell differentiation. In males, we identify human SIGLEC15+ and TREM2+ fetal testicular macrophages, which signal to somatic cells outside and inside the developing testis cords, respectively. This study provides a comprehensive spatiotemporal map of human and mouse gonadal differentiation, which can guide in vitro gonadogenesis.
Assuntos
Linhagem da Célula , Células Germinativas , Ovário , Diferenciação Sexual , Análise de Célula Única , Testículo , Animais , Cromatina/genética , Cromatina/metabolismo , Feminino , Células Germinativas/citologia , Células Germinativas/metabolismo , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Humanos , Imunoglobulinas , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana , Proteínas de Membrana , Camundongos , Microscopia de Fluorescência , Ovário/citologia , Ovário/embriologia , Fator de Transcrição PAX8 , Gravidez , Primeiro Trimestre da Gravidez , Segundo Trimestre da Gravidez , Receptores Imunológicos , Diferenciação Sexual/genética , Testículo/citologia , Testículo/embriologia , TranscriptomaRESUMO
Genome sequencing of cancers often reveals mosaics of different subclones present in the same tumour1-3. Although these are believed to arise according to the principles of somatic evolution, the exact spatial growth patterns and underlying mechanisms remain elusive4,5. Here, to address this need, we developed a workflow that generates detailed quantitative maps of genetic subclone composition across whole-tumour sections. These provide the basis for studying clonal growth patterns, and the histological characteristics, microanatomy and microenvironmental composition of each clone. The approach rests on whole-genome sequencing, followed by highly multiplexed base-specific in situ sequencing, single-cell resolved transcriptomics and dedicated algorithms to link these layers. Applying the base-specific in situ sequencing workflow to eight tissue sections from two multifocal primary breast cancers revealed intricate subclonal growth patterns that were validated by microdissection. In a case of ductal carcinoma in situ, polyclonal neoplastic expansions occurred at the macroscopic scale but segregated within microanatomical structures. Across the stages of ductal carcinoma in situ, invasive cancer and lymph node metastasis, subclone territories are shown to exhibit distinct transcriptional and histological features and cellular microenvironments. These results provide examples of the benefits afforded by spatial genomics for deciphering the mechanisms underlying cancer evolution and microenvironmental ecology.
Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Evolução Clonal , Células Clonais , Genômica , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Evolução Clonal/genética , Células Clonais/metabolismo , Células Clonais/patologia , Mutação , Microambiente Tumoral/genética , Sequenciamento Completo do Genoma , Transcriptoma , Reprodutibilidade dos Testes , Microdissecção , AlgoritmosRESUMO
The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung's disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease.
Assuntos
Envelhecimento , Sistema Nervoso Entérico/citologia , Feto/citologia , Saúde , Intestinos/citologia , Intestinos/crescimento & desenvolvimento , Linfonodos/citologia , Linfonodos/crescimento & desenvolvimento , Adulto , Animais , Criança , Doença de Crohn/patologia , Conjuntos de Dados como Assunto , Sistema Nervoso Entérico/anatomia & histologia , Sistema Nervoso Entérico/embriologia , Sistema Nervoso Entérico/crescimento & desenvolvimento , Células Epiteliais/citologia , Feminino , Feto/anatomia & histologia , Feto/embriologia , Humanos , Intestinos/embriologia , Intestinos/inervação , Linfonodos/embriologia , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Organogênese , Receptores de IgG/metabolismo , Transdução de Sinais , Análise Espaço-Temporal , Fatores de TempoRESUMO
Cardiovascular disease is the leading cause of death worldwide. Advanced insights into disease mechanisms and therapeutic strategies require a deeper understanding of the molecular processes involved in the healthy heart. Knowledge of the full repertoire of cardiac cells and their gene expression profiles is a fundamental first step in this endeavour. Here, using state-of-the-art analyses of large-scale single-cell and single-nucleus transcriptomes, we characterize six anatomical adult heart regions. Our results highlight the cellular heterogeneity of cardiomyocytes, pericytes and fibroblasts, and reveal distinct atrial and ventricular subsets of cells with diverse developmental origins and specialized properties. We define the complexity of the cardiac vasculature and its changes along the arterio-venous axis. In the immune compartment, we identify cardiac-resident macrophages with inflammatory and protective transcriptional signatures. Furthermore, analyses of cell-to-cell interactions highlight different networks of macrophages, fibroblasts and cardiomyocytes between atria and ventricles that are distinct from those of skeletal muscle. Our human cardiac cell atlas improves our understanding of the human heart and provides a valuable reference for future studies.
Assuntos
Miocárdio/citologia , Análise de Célula Única , Transcriptoma , Adipócitos/classificação , Adipócitos/metabolismo , Adulto , Enzima de Conversão de Angiotensina 2/análise , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Células Epiteliais/classificação , Células Epiteliais/metabolismo , Epitélio , Feminino , Fibroblastos/classificação , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Átrios do Coração/anatomia & histologia , Átrios do Coração/citologia , Átrios do Coração/inervação , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/citologia , Ventrículos do Coração/inervação , Homeostase/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Miócitos Cardíacos/classificação , Miócitos Cardíacos/metabolismo , Neurônios/classificação , Neurônios/metabolismo , Pericitos/classificação , Pericitos/metabolismo , Receptores de Coronavírus/análise , Receptores de Coronavírus/genética , Receptores de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Células Estromais/classificação , Células Estromais/metabolismoRESUMO
Multiple sclerosis (MS) is a neuroinflammatory disease with a relapsing-remitting disease course at early stages, distinct lesion characteristics in cortical grey versus subcortical white matter and neurodegeneration at chronic stages. Here we used single-nucleus RNA sequencing to assess changes in expression in multiple cell lineages in MS lesions and validated the results using multiplex in situ hybridization. We found selective vulnerability and loss of excitatory CUX2-expressing projection neurons in upper-cortical layers underlying meningeal inflammation; such MS neuron populations exhibited upregulation of stress pathway genes and long non-coding RNAs. Signatures of stressed oligodendrocytes, reactive astrocytes and activated microglia mapped most strongly to the rim of MS plaques. Notably, single-nucleus RNA sequencing identified phagocytosing microglia and/or macrophages by their ingestion and perinuclear import of myelin transcripts, confirmed by functional mouse and human culture assays. Our findings indicate lineage- and region-specific transcriptomic changes associated with selective cortical neuron damage and glial activation contributing to progression of MS lesions.
Assuntos
Linhagem da Célula , Esclerose Múltipla/patologia , Neurônios/patologia , Adulto , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Autopsia , Criopreservação , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Esclerose Múltipla/genética , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Fagocitose , RNA Nuclear Pequeno/análise , RNA Nuclear Pequeno/genética , RNA-Seq , Transcriptoma/genéticaAssuntos
Biologia Computacional/métodos , Processamento de Imagem Assistida por Computador/métodos , Metadados , Algoritmos , Animais , Congressos como Assunto , Microscopia Crioeletrônica/métodos , Mineração de Dados/métodos , Bases de Dados Factuais , Diagnóstico por Imagem/métodos , Humanos , Microscopia , SoftwareRESUMO
Human outer subventricular zone (OSVZ) neural progenitors and Drosophila type II neuroblasts both generate intermediate neural progenitors (INPs) that populate the adult cerebral cortex or central complex, respectively. It is unknown whether INPs simply expand or also diversify neural cell types. Here we show that Drosophila INPs sequentially generate distinct neural subtypes, that INPs sequentially express Dichaete, Grainy head and Eyeless transcription factors, and that these transcription factors are required for the production of distinct neural subtypes. Moreover, parental type II neuroblasts also sequentially express transcription factors and generate different neuronal/glial progeny over time, providing a second temporal identity axis. We conclude that neuroblast and INP temporal patterning axes act together to generate increased neural diversity within the adult central complex; OSVZ progenitors may use similar mechanisms to increase neural diversity in the human brain.
Assuntos
Linhagem da Célula , Drosophila melanogaster/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Neurônios/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Feminino , Regulação da Expressão Gênica , Células-Tronco Neurais/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismoRESUMO
The cerebellum undergoes rapid growth during the third trimester and is vulnerable to injury and deficient growth in infants born prematurely. Factors associated with preterm cerebellar hypoplasia include chronic lung disease and postnatal glucocorticoid administration. We modeled chronic hypoxemia and glucocorticoid administration in neonatal mice to study whole cerebellar and cell type-specific effects of dual exposure. Chronic neonatal hypoxia resulted in permanent cerebellar hypoplasia. This was compounded by administration of prednisolone as shown by greater volume loss and Purkinje cell death. In the setting of hypoxia and prednisolone, administration of a small molecule Smoothened-Hedgehog agonist (SAG) preserved cerebellar volume and protected against Purkinje cell death. Such protective effects were observed even when SAG was given as a one-time dose after dual insult. To model complex injury and determine cell type-specific roles for the hypoxia inducible factor (HIF) pathway, we performed conditional knockout of von Hippel Lindau (VHL) to hyperactivate HIF1α in cerebellar granule neuron precursors (CGNP) or Purkinje cells. Surprisingly, HIF activation in either cell type resulted in no cerebellar deficit. However, in mice administered prednisolone, HIF overactivation in CGNPs resulted in significant cerebellar hypoplasia, whereas HIF overactivation in Purkinje cells caused cell death. Together, these findings indicate that HIF primes both cell types for injury via glucocorticoids, and that hypoxia/HIF + postnatal glucocorticoid administration act on distinct cellular pathways to cause cerebellar injury. They further suggest that SAG is neuroprotective in the setting of complex neonatal cerebellar injury.
Assuntos
Anti-Inflamatórios/uso terapêutico , Cerebelo/anormalidades , Cicloexilaminas/uso terapêutico , Proteínas Hedgehog/agonistas , Proteínas Hedgehog/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Tiofenos/uso terapêutico , Aminoácidos Dicarboxílicos/farmacologia , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Cerebelo/efeitos dos fármacos , Deficiências do Desenvolvimento/etiologia , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Glucocorticoides/farmacologia , Hipóxia Encefálica/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Malformações do Sistema Nervoso/etiologia , Prednisolona/uso terapêutico , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismoRESUMO
OBJECTIVE: There are various treatment modalities for bony Bankart lesions following glenohumeral joint dislocations. In this research, we aimed to compare the radiological and clinical results of patients who underwent the Latarjet procedure and iliac crest bone graft transfer. MATERIALS AND METHODS: Clinical and radiological data of 15 patients were retrospectively evaluated. Inclusion criteria were a history of at least two dislocations, being between 18-65 years of age and having at least 10% glenoid bone loss. The exclusion criteria were defined as follows: patients who underwent only soft tissue procedures, patients who did not attend the follow-up, patients with other pathology in the upper extremity (fracture, cuff tear, etc.), and patients with a follow-up period of less than 12 months time. Nine patients underwent the Latarjet procedure and six underwent iliac crest bone graft transfer. Clinical evaluation, age, gender, body mass index, range of motion, Quick Disabilities of the Arm, Shoulder and Hand (QDASH) score, Constant score, and Visual Analogue Scale (VAS) score were evaluated. Radiographic evaluation was performed with preoperative and postoperative direct radiographs and computed tomography. Mann-Whitney U test, t-test, and Fisher exact tests were used for group comparisons. RESULTS: The mean age of the patients was 32.6 years and the mean follow-up period was 24.9 months. When the two groups were compared, no statistical difference was found in terms of age, gender, body mass index, range of motion, Constant score, VAS score, glenoid cartilage stepping, and bone defect (p>0.05). The operation time was longer in the iliac crest bone graft transfer group compared to the Latarjet group (p<0.05). CONCLUSION: Latarjet and iliac crest bone graft transfer can be used successfully in the treatment of bony Bankart in recurrent anterior shoulder dislocations. The operation time is longer in iliac crest bone graft transfer compared to the Latarjet procedure.
RESUMO
Mammalian astrocytes have regional roles within the brain parenchyma. Indeed, the notion that astrocytes are molecularly heterogeneous could help explain how the central nervous system (CNS) retains embryonic positional information through development into specialized regions into adulthood. A growing body of evidence supports the concept of morphological and molecular differences between astrocytes in different brain regions, which might relate to their derivation from regionally patterned radial glia and/or local neuron inductive cues. Here, we review evidence for regionally encoded functions of astrocytes to provide an integrated concept on lineage origins and heterogeneity to understand regional brain organization, as well as emerging technologies to identify and further investigate novel roles for astrocytes.
RESUMO
Lung cancer is the second most frequently diagnosed cancer and the leading cause of cancer-related mortality worldwide. Tumour ecosystems feature diverse immune cell types. Myeloid cells, in particular, are prevalent and have a well-established role in promoting the disease. In our study, we profile approximately 900,000 cells from 25 treatment-naive patients with adenocarcinoma and squamous-cell carcinoma by single-cell and spatial transcriptomics. We note an inverse relationship between anti-inflammatory macrophages and NK cells/T cells, and with reduced NK cell cytotoxicity within the tumour. While we observe a similar cell type composition in both adenocarcinoma and squamous-cell carcinoma, we detect significant differences in the co-expression of various immune checkpoint inhibitors. Moreover, we reveal evidence of a transcriptional "reprogramming" of macrophages in tumours, shifting them towards cholesterol export and adopting a foetal-like transcriptional signature which promotes iron efflux. Our multi-omic resource offers a high-resolution molecular map of tumour-associated macrophages, enhancing our understanding of their role within the tumour microenvironment.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Análise de Célula Única/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Regulação Neoplásica da Expressão Gênica , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Perfilação da Expressão Gênica/métodos , Macrófagos/metabolismo , Macrófagos/imunologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismoRESUMO
BACKGROUND: Lung damage in severe COVID-19 is highly heterogeneous however studies with dedicated spatial distinction of discrete temporal phases of diffuse alveolar damage (DAD) and alternate lung injury patterns are lacking. Existing studies have also not accounted for progressive airspace obliteration in cellularity estimates. We used an imaging mass cytometry (IMC) analysis with an airspace correction step to more accurately identify the cellular immune response that underpins the heterogeneity of severe COVID-19 lung disease. METHODS: Lung tissue was obtained at post-mortem from severe COVID-19 deaths. Pathologist-selected regions of interest (ROIs) were chosen by light microscopy representing the patho-evolutionary spectrum of DAD and alternate disease phenotypes were selected for comparison. Architecturally normal SARS-CoV-2-positive lung tissue and tissue from SARS-CoV-2-negative donors served as controls. ROIs were stained for 40 cellular protein markers and ablated using IMC before segmented cells were classified. Cell populations corrected by ROI airspace and their spatial relationships were compared across lung injury patterns. FINDINGS: Forty patients (32M:8F, age: 22-98), 345 ROIs and >900k single cells were analysed. DAD progression was marked by airspace obliteration and significant increases in mononuclear phagocytes (MnPs), T and B lymphocytes and significant decreases in alveolar epithelial and endothelial cells. Neutrophil populations proved stable overall although several interferon-responding subsets demonstrated expansion. Spatial analysis revealed immune cell interactions occur prior to microscopically appreciable tissue injury. INTERPRETATION: The immunopathogenesis of severe DAD in COVID-19 lung disease is characterised by sustained increases in MnPs and lymphocytes with key interactions occurring even prior to lung injury is established. FUNDING: UK Research and Innovation/Medical Research Council through the UK Coronavirus Immunology Consortium, Barbour Foundation, General Sir John Monash Foundation, Newcastle University, JGW Patterson Foundation, Wellcome Trust.
Assuntos
COVID-19 , Lesão Pulmonar , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , COVID-19/patologia , Lesão Pulmonar/patologia , Células Endoteliais , SARS-CoV-2 , Pulmão/patologiaRESUMO
Skeletal muscle aging is a key contributor to age-related frailty and sarcopenia with substantial implications for global health. Here we profiled 90,902 single cells and 92,259 single nuclei from 17 donors to map the aging process in the adult human intercostal muscle, identifying cellular changes in each muscle compartment. We found that distinct subsets of muscle stem cells exhibit decreased ribosome biogenesis genes and increased CCL2 expression, causing different aging phenotypes. Our atlas also highlights an expansion of nuclei associated with the neuromuscular junction, which may reflect re-innervation, and outlines how the loss of fast-twitch myofibers is mitigated through regeneration and upregulation of fast-type markers in slow-twitch myofibers with age. Furthermore, we document the function of aging muscle microenvironment in immune cell attraction. Overall, we present a comprehensive human skeletal muscle aging resource ( https://www.muscleageingcellatlas.org/ ) together with an in-house mouse muscle atlas to study common features of muscle aging across species.
Assuntos
Envelhecimento , Músculo Esquelético , Humanos , Envelhecimento/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Animais , Camundongos , Adulto , Idoso , Sarcopenia/patologia , Sarcopenia/metabolismo , Masculino , Junção Neuromuscular/metabolismo , Pessoa de Meia-Idade , FemininoRESUMO
BACKGROUND: Obesity rates have nearly tripled in the past 50 years, and by 2030 more than 1 billion individuals worldwide are projected to be obese. This creates a significant economic strain due to the associated non-communicable diseases. The root cause is an energy expenditure imbalance, owing to an interplay of lifestyle, environmental, and genetic factors. Obesity has a polygenic genetic architecture; however, single genetic variants with large effect size are etiological in a minority of cases. These variants allowed the discovery of novel genes and biology relevant to weight regulation and ultimately led to the development of novel specific treatments. METHODS: We used a case-control approach to determine metabolic differences between individuals homozygous for a loss-of-function genetic variant in the small integral membrane protein 1 (SMIM1) and the general population, leveraging data from five cohorts. Metabolic characterization of SMIM1-/- individuals was performed using plasma biochemistry, calorimetric chamber, and DXA scan. FINDINGS: We found that individuals homozygous for a loss-of-function genetic variant in SMIM1 gene, underlying the blood group Vel, display excess body weight, dyslipidemia, altered leptin to adiponectin ratio, increased liver enzymes, and lower thyroid hormone levels. This was accompanied by a reduction in resting energy expenditure. CONCLUSION: This research identified a novel genetic predisposition to being overweight or obese. It highlights the need to investigate the genetic causes of obesity to select the most appropriate treatment given the large cost disparity between them. FUNDING: This work was funded by the National Institute of Health Research, British Heart Foundation, and NHS Blood and Transplant.
Assuntos
Metabolismo Energético , Leptina , Obesidade , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adiponectina/genética , Adiponectina/metabolismo , Estudos de Casos e Controles , Metabolismo Energético/genética , Leptina/sangue , Leptina/genética , Leptina/metabolismo , Mutação com Perda de Função , Proteínas de Membrana/genética , Obesidade/genética , Obesidade/metabolismo , Sobrepeso/genética , Hormônios Tireóideos/sangue , Hormônios Tireóideos/metabolismoRESUMO
The Drosophila larval central brain contains about 10,000 differentiated neurons and 200 scattered neural progenitors (neuroblasts), which can be further subdivided into ~95 type I neuroblasts and eight type II neuroblasts per brain lobe. Only type II neuroblasts generate self-renewing intermediate neural progenitors (INPs), and consequently each contributes more neurons to the brain, including much of the central complex. We characterized six different mutant genotypes that lead to expansion of neuroblast numbers; some preferentially expand type II or type I neuroblasts. Transcriptional profiling of larval brains from these mutant genotypes versus wild-type allowed us to identify small clusters of transcripts enriched in type II or type I neuroblasts, and we validated these clusters by gene expression analysis. Unexpectedly, only a few genes were found to be differentially expressed between type I/II neuroblasts, suggesting that these genes play a large role in establishing the different cell types. We also identified a large group of genes predicted to be expressed in all neuroblasts but not in neurons. We performed a neuroblast-specific, RNAi-based functional screen and identified 84 genes that are required to maintain proper neuroblast numbers; all have conserved mammalian orthologs. These genes are excellent candidates for regulating neural progenitor self-renewal in Drosophila and mammals.
Assuntos
Encéfalo/crescimento & desenvolvimento , Drosophila/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Genômica/métodos , Homeostase/genética , Células-Tronco Neurais/metabolismo , Animais , Análise por Conglomerados , Genótipo , Homeostase/fisiologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Análise em Microsséries , Microscopia Confocal , Células-Tronco Neurais/fisiologia , Interferência de RNARESUMO
Chloroplast mRNA populations are characterized by overlapping transcripts derived by processing from polycistronic precursors. The mechanisms and functional significance of these processing events are poorly understood. We describe a pentatricopeptide repeat (PPR) protein, PPR10, whose binding defines mRNA segments derived from two transcription units in maize chloroplasts. PPR10 interacts in vivo and in vitro with two intergenic RNA regions of similar sequence. The processed 5' and 3' RNA termini in these regions overlap by approximately 25 nucleotides. The PPR10-binding sites map precisely to these overlapping sequences, and PPR10 is required specifically for the accumulation of RNAs with these termini. These findings show that PPR10 serves as a barrier to RNA decay from either the 5' or 3' direction and that a bound protein provides an alternative to an RNA hairpin as a barrier to 3' exonucleases. The results imply that protein 'caps' at both 5' and 3' ends can define the termini of chloroplast mRNA segments. These results, together with recent insights into bacterial RNA decay, suggest a unifying model for the biogenesis of chloroplast transcript populations and for the determinants of chloroplast mRNA stability.
Assuntos
Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Mensageiro/metabolismo , Zea mays/metabolismo , Cloroplastos/genética , Dados de Sequência Molecular , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/genética , Zea mays/genéticaRESUMO
Cortical state, defined by population-level neuronal activity patterns, determines sensory perception. While arousal-associated neuromodulators-including norepinephrine (NE)-reduce cortical synchrony, how the cortex resynchronizes remains unknown. Furthermore, general mechanisms regulating cortical synchrony in the wake state are poorly understood. Using in vivo imaging and electrophysiology in mouse visual cortex, we describe a critical role for cortical astrocytes in circuit resynchronization. We characterize astrocytes' calcium responses to changes in behavioral arousal and NE, and show that astrocytes signal when arousal-driven neuronal activity is reduced and bi-hemispheric cortical synchrony is increased. Using in vivo pharmacology, we uncover a paradoxical, synchronizing response to Adra1a receptor stimulation. We reconcile these results by demonstrating that astrocyte-specific deletion of Adra1a enhances arousal-driven neuronal activity, while impairing arousal-related cortical synchrony. Our findings demonstrate that astrocytic NE signaling acts as a distinct neuromodulatory pathway, regulating cortical state and linking arousal-associated desynchrony to cortical circuit resynchronization.