Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 65(6): 100548, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649096

RESUMO

DHA is abundant in the brain where it regulates cell survival, neurogenesis, and neuroinflammation. DHA can be obtained from the diet or synthesized from alpha-linolenic acid (ALA; 18:3n-3) via a series of desaturation and elongation reactions occurring in the liver. Tracer studies suggest that dietary DHA can downregulate its own synthesis, but the mechanism remains undetermined and is the primary objective of this manuscript. First, we show by tracing 13C content (δ13C) of DHA via compound-specific isotope analysis, that following low dietary DHA, the brain receives DHA synthesized from ALA. We then show that dietary DHA increases mouse liver and serum EPA, which is dependant on ALA. Furthermore, by compound-specific isotope analysis we demonstrate that the source of increased EPA is slowed EPA metabolism, not increased DHA retroconversion as previously assumed. DHA feeding alone or with ALA lowered liver elongation of very long chain (ELOVL2, EPA elongation) enzyme activity despite no change in protein content. To further evaluate the role of ELOVL2, a liver-specific Elovl2 KO was generated showing that DHA feeding in the presence or absence of a functional liver ELOVL2 yields similar results. An enzyme competition assay for EPA elongation suggests both uncompetitive and noncompetitive inhibition by DHA depending on DHA levels. To translate our findings, we show that DHA supplementation in men and women increases EPA levels in a manner dependent on a SNP (rs953413) in the ELOVL2 gene. In conclusion, we identify a novel feedback inhibition pathway where dietary DHA downregulates its liver synthesis by inhibiting EPA elongation.


Assuntos
Ácidos Docosa-Hexaenoicos , Regulação para Baixo , Ácido Eicosapentaenoico , Fígado , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , Animais , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Regulação para Baixo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/metabolismo , Ácido alfa-Linolênico/administração & dosagem
2.
J Lipid Res ; 64(5): 100357, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948271

RESUMO

The brain is rich in DHA, which plays important roles in regulating neuronal function. Recently, using compound-specific isotope analysis that takes advantage of natural differences in carbon-13 content (13C/12C ratio or δ13C) of the food supply, we determined the brain DHA half-life. However, because of methodological limitations, we were unable to capture DHA turnover rates in peripheral tissues. In the current study, we applied compound-specific isotope analysis via high-precision GC combustion isotope ratio mass spectrometry to determine half-lives of brain, liver, and plasma DHA in mice following a dietary switch experiment. To model DHA tissue turnover rates in peripheral tissues, we added earlier time points within the diet switch study and took advantage of natural variations in the δ13C-DHA of algal and fish DHA sources to maintain DHA pool sizes and used an enriched (uniformly labeled 13C) DHA treatment. Mice were fed a fish-DHA diet (control) for 3 months, then switched to an algal-DHA treatment diet, the 13C enriched-DHA treatment diet, or they stayed on the control diet for the remainder of the study time course. In mice fed the algal and 13C enriched-DHA diets, the brain DHA half-life was 47 and 46 days, the liver half-life was 5.6 and 7.2 days, and the plasma half-life was 4.7 and 6.4 days, respectively. By using improved methodologies, we calculated DHA turnover rates in the liver and plasma, and our study for the first time, by using an enriched DHA source (very high δ13C), validated its utility in diet switch studies.


Assuntos
Dieta , Ácidos Docosa-Hexaenoicos , Camundongos , Animais , Ácidos Docosa-Hexaenoicos/química , Isótopos , Fígado
3.
J Lipid Res ; 64(9): 100424, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572791

RESUMO

Natural variations in the 13C:12C ratio (carbon-13 isotopic abundance [δ13C]) of the food supply have been used to determine the dietary origin and metabolism of fatty acids, especially in the n-3 PUFA biosynthesis pathway. However, n-6 PUFA metabolism following linoleic acid (LNA) intake remains under investigation. Here, we sought to use natural variations in the δ13C signature of dietary oils and fatty fish to analyze n-3 and n-6 PUFA metabolism following dietary changes in LNA and eicosapentaenoic acid (EPA) + DHA in adult humans. Participants with migraine (aged 38.6 ± 2.3 years, 93% female, body mass index of 27.0 ± 1.1 kg/m2) were randomly assigned to one of three dietary groups for 16 weeks: 1) low omega-3, high omega-6 (H6), 2) high omega-3, high omega-6 (H3H6), or 3) high omega-3, low omega-6 (H3). Blood was collected at baseline, 4, 10, and 16 weeks. Plasma PUFA concentrations and δ13C were determined. The H6 intervention exhibited increases in plasma LNA δ13C signature over time; meanwhile, plasma LNA concentrations were unchanged. No changes in plasma arachidonic acid δ13C or concentration were observed. Participants on the H3H6 and H3 interventions demonstrated increases in plasma EPA and DHA concentration over time. Plasma δ13C-EPA increased in total lipids of the H3 group and phospholipids of the H3H6 group compared with baseline. Compound-specific isotope analysis supports a tracer-free technique that can track metabolism of dietary fatty acids in humans, provided that the isotopic signature of the dietary source is sufficiently different from plasma δ13C.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-6 , Adulto , Animais , Humanos , Feminino , Masculino , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos , Fosfolipídeos , Ácidos Docosa-Hexaenoicos/metabolismo
4.
J Neurochem ; 164(1): 44-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36196762

RESUMO

Our knowledge surrounding the overall fatty acid profile of the adult human brain has been largely limited to extrapolations from brain regions in which the distribution of fatty acids varies. This is especially problematic when modeling brain fatty acid metabolism, therefore, an updated estimate of whole-brain fatty acid concentration is necessitated. Here, we sought to conduct a comprehensive quantitative analysis of fatty acids from entire well-characterized human brain hemispheres (n = 6) provided by the Douglas-Bell Canada Brain Bank. Additionally, exploratory natural abundance carbon isotope ratio (CIR; δ13 C, 13 C/12 C) analysis was performed to assess the origin of brain fatty acids. Brain fatty acid methyl esters (FAMEs) were quantified by gas chromatography (GC)-flame ionization detection and minor n-6 and n-3 polyunsaturated fatty acid pentafluorobenzyl esters by GC-mass spectrometry. Carbon isotope ratio values of identifiable FAMEs were measured by GC-combustion-isotope ratio mass spectrometry. Overall, the most abundant fatty acid in the human brain was oleic acid, followed by stearic acid (STA), palmitic acid (PAM), docosahexaenoic acid (DHA), and arachidonic acid (ARA). Interestingly, cholesterol as well as saturates including PAM and STA were most enriched in 13 C, while PUFAs including DHA and ARA were most depleted in 13 C. These findings suggest a contribution of endogenous synthesis utilizing dietary sugar substrates rich in 13 C, and a combination of marine, animal, and terrestrial PUFA sources more depleted in 13 C, respectively. These results provide novel insights on cerebral fatty acid origin and concentration, the latter serving as a valuable resource for future modeling of fatty acid metabolism in the human brain.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos , Adulto , Animais , Humanos , Ácidos Graxos/metabolismo , Isótopos de Carbono/análise , Ácidos Docosa-Hexaenoicos/metabolismo , Encéfalo/metabolismo
5.
Curr Opin Clin Nutr Metab Care ; 26(3): 284-287, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36943155

RESUMO

PURPOSE OF REVIEW: A central goal in the study of long chain n-3 polyunsaturated fatty acids (PUFA) is to translate findings from the basic sciences to the population level to improve human health and prevent chronic diseases. A tenet of this vision is to think in terms of precision medicine and nutrition, that is, stratification of individuals into differing groups that will have different needs across the lifespan for n-3 PUFAs. Therefore, there is a critical need to identify the sources of heterogeneity in the human population in the dietary response to n-3 PUFA intervention. RECENT FINDINGS: We briefly review key sources of heterogeneity in the response to intake of long chain n-3 PUFAs. These include background diet, host genome, composition of the gut microbiome, and sex. We also discuss the need to integrate data from newer rodent models (e.g. population-based approaches), multi -omics, and analyses of big data using machine learning and data-driven cluster analyses. SUMMARY: Accounting for vast heterogeneity in the human population, particularly with the use of big data integrated with preclinical evidence, will drive the next generation of precision nutrition studies and randomized clinical trials with long-chain n-3 PUFAs.


Assuntos
Ácidos Graxos Ômega-3 , Humanos , Dieta , Ácidos Graxos Insaturados , Estado Nutricional , Ácidos Graxos
6.
J Nutr ; 153(3): 857-869, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36809853

RESUMO

BACKGROUND: A large part of the existential threat associated with climate change is the result of current human feeding patterns. Over the last decade, research evaluating the diet-related environmental impacts of plant-based diets has emerged, and a synthesis of the available data is now due. OBJECTIVES: The objectives of the study were as follows: 1) to compile and summarize the literature on diet-related environmental impacts of plant-based dietary patterns; 2) to assess the nature of the data on impacts of plant-based dietary patterns on both environmental parameters and health (e.g., if land use is reduced for a particular diet, is cancer risk also reduced?); and 3) to determine where sufficient data exist for meta-analyses, in addition to identifying gaps within the literature. METHODS: Global peer-reviewed studies on the environmental impacts of plant-based diets were searched in Ovid MEDLINE, EMBASE, and Web of Science. After removing duplicates, the screening identified 1553 records. After 2 stages of independent review by 2 reviewers, 65 records met the inclusion criteria and were eligible to be used in synthesis. RESULTS: Evidence suggests that plant-based diets may offer lower greenhouse gas emissions (GHGEs), land use, and biodiversity loss than offered by standard diets; however, the impact on water and energy use may depend on the types of plant-based foods consumed. Further, the studies were consistent in demonstrating that plant-based dietary patterns that reduce diet-related mortality also promote environmental sustainability. CONCLUSIONS: Overall, there was agreement across the studies regarding the impact of plant-based dietary patterns on GHGE, land used, and biodiversity loss despite varied plant-based diets assessed.


Assuntos
Dieta , Meio Ambiente , Humanos , Comportamento Alimentar , Plantas
7.
J Neurochem ; 161(2): 112-128, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34780089

RESUMO

Previously, results from studies investigating if brain palmitic acid (16:0; PAM) was maintained by either dietary uptake or de novo lipogenesis (DNL) varied. Here, we utilize naturally occurring carbon isotope ratios (13 C/12 C; δ13 C) to uncover the origin of brain PAM. Additionally, we explored brain and liver fatty acid concentration, brain metabolomics, and behavior. BALB/c dams were equilibrated onto either a low PAM diet (LP; <2%) or high PAM diet (HP; >95%) prior to producing one generation of offspring. Offspring stayed on the respective diet of the dam until 15-weeks of age, at which time the Open Field test was conducted, prior to euthanasia and tissue lipid extraction. Although liver PAM was lower in mice fed the LP diet, as well as female mice, brain PAM was not affected by diet or sex. Across mice of either sex on both diets, brain 13 C-PAM revealed compared to dietary uptake, DNL from dietary sugars contributed 68.8%-79.5% and 46.6%-58.0% to the total brain PAM pool by both peripheral and local brain DNL, and local brain DNL alone, respectively. DNL was augmented in mice fed the LP diet, and the ability to up-regulate DNL in the liver or the brain depended on sex. Anxiety-like behaviors were decreased in mice fed the LP diet and were correlated with markers of LP diet consumption including increased liver 13 C-PAM, warranting further investigation. Altogether, our results indicate that DNL from dietary sugars is a compensatory mechanism to maintain brain PAM in response to the LP diet.


Assuntos
Açúcares da Dieta , Lipogênese , Animais , Encéfalo , Feminino , Lipogênese/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ácido Palmítico
8.
Neurochem Res ; 47(3): 795-810, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34820737

RESUMO

White matter degeneration in the central nervous system (CNS) has been correlated with a decline in cognitive function during aging. Ultrastructural examination of the aging human brain shows a loss of myelin, yet little is known about molecular and biochemical changes that lead to myelin degeneration. In this study, we investigate myelination across the lifespan in C57BL/6 mice using electron microscopy and Fourier transform infrared (FTIR) spectroscopic imaging to better understand the relationship between structural and biochemical changes in CNS white matter tracts. A decrease in the number of myelinated axons was associated with altered lipid profiles in the corpus callosum of aged mice. FTIR spectroscopic imaging revealed alterations in functional groups associated with phospholipids, including the lipid acyl, lipid ester and phosphate vibrations. Biochemical changes in white matter were observed prior to structural changes and most predominant in the anterior regions of the corpus callosum. This was supported by biochemical analysis of fatty acid composition that demonstrated an overall trend towards increased monounsaturated fatty acids and decreased polyunsaturated fatty acids with age. To further explore the molecular mechanisms underlying these biochemical alterations, gene expression profiles of lipid metabolism and oxidative stress pathways were investigated. A decrease in the expression of several genes involved in glutathione metabolism suggests that oxidative damage to lipids may contribute to age-related white matter degeneration.


Assuntos
Substância Branca , Envelhecimento/fisiologia , Animais , Encéfalo/metabolismo , Corpo Caloso/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina , Espectroscopia de Infravermelho com Transformada de Fourier , Substância Branca/metabolismo
9.
Br J Nutr ; 127(1): 68-77, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34027846

RESUMO

Dairy fat is rich in SFA such as palmitic acid (16:0) but low in linoleic acid (18:2n-6). The natural carbon 13 enrichment (δ13C) of 16:0 is higher in dairy fat than in most of the food supply. In adults, serum levels of pentadecanoic acid (15:0) and heptadecanoic acid (17:0) are recognised as biomarkers of dairy intake. In adolescents, no study has evaluated serum fatty acid levels or δ13C in response to chronic dairy consumption. The objectives of this study were to evaluate whether increased dairy product consumption can modulate (1) serum fatty acid levels and (2) 16:0 δ13C in adolescents with overweight/obesity who followed a 12-week weight management programme. This secondary analysis of a randomised control trial included two groups of adolescent females: recommended dairy (RDa; n 23) and low dairy (LDa; n 23). The RDa group was given 4 servings/d of dairy products while the LDa group maintained dairy intakes at ≤ 2 servings/d. Blood was sampled before and after the intervention. Lipids were extracted and separated, and fatty acids were quantified by GC. Isotope ratio MS was used to assess 16:0 δ13C. There were no group differences on serum changes of 15:0 or 17:0. Within TAG, 18:2n-6 was lowered by 7·4 % only in the RDa group (P = 0·040). The difference in delta 16:0 δ13C between the LDa and RDa groups did not reach statistical significance (P = 0·070). Reductions in serum 18:2n-6 by dairy consumption could have positive health implications, but more studies are needed to confirm this assertion.


Assuntos
Ácido Linoleico , Sobrepeso , Adolescente , Adulto , Laticínios/análise , Ácidos Graxos , Feminino , Humanos , Obesidade
10.
Br J Nutr ; 128(3): 487-497, 2022 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-34511138

RESUMO

Adherence to the Dietary Approaches to Stop Hypertension (DASH) diet is inversely associated with type 2 diabetes mellitus (T2DM) risk. Metabolic changes due to DASH adherence and their potential relationship with incident T2DM have not been described. The objective is to determine metabolite clusters associated with adherence to a DASH-like diet in the Insulin Resistance Atherosclerosis Study cohort and explore if the clusters predicted 5-year incidence of T2DM. The current study included 570 non-diabetic multi-ethnic participants aged 40­69 years. Adherence to a DASH-like diet was determined a priori through an eighty-point scale for absolute intakes of the eight DASH food groups. Quantitative measurements of eighty-seven metabolites (acylcarnitines, amino acids, bile acids, sterols and fatty acids) were obtained at baseline. Metabolite clusters related to DASH adherence were determined through partial least squares (PLS) analysis using R. Multivariable-adjusted logistic regression was used to explore the associations between metabolite clusters and incident T2DM. A group of acylcarnitines and fatty acids loaded strongly on the two components retained under PLS. Among strongly loading metabolites, a select group of acylcarnitines had over 50 % of their individual variance explained by the PLS model. Component 2 was inversely associated with incident T2DM (OR: 0·89; (95 % CI 0·80, 0·99), P-value = 0·043) after adjustment for demographic and metabolic covariates. Component 1 was not associated with T2DM risk (OR: 1·02; (95 % CI 0·88, 1·19), P-value = 0·74). Adherence to a DASH-type diet may contribute to reduced T2DM risk in part through modulations in acylcarnitine and fatty acid physiology.


Assuntos
Diabetes Mellitus Tipo 2 , Abordagens Dietéticas para Conter a Hipertensão , Hipertensão , Humanos , Dieta , Hipertensão/epidemiologia , Ácidos Graxos
11.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743093

RESUMO

Long-chain (LC) n-3 polyunsaturated fatty acids (PUFAs) have drawn attention in the field of neuropsychiatric disorders, in particular depression. However, whether dietary supplementation with LC n-3 PUFA protects from the development of mood disorders is still a matter of debate. In the present study, we studied the effect of a two-month exposure to isocaloric diets containing n-3 PUFAs in the form of relatively short-chain (SC) (6% of rapeseed oil, enriched in α-linolenic acid (ALA)) or LC (6% of tuna oil, enriched in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) PUFAs on behavior and synaptic plasticity of mice submitted or not to a chronic social defeat stress (CSDS), previously reported to alter emotional and social behavior, as well as synaptic plasticity in the nucleus accumbens (NAc). First, fatty acid content and lipid metabolism gene expression were measured in the NAc of mice fed a SC (control) or LC n-3 (supplemented) PUFA diet. Our results indicate that LC n-3 supplementation significantly increased some n-3 PUFAs, while decreasing some n-6 PUFAs. Then, in another cohort, control and n-3 PUFA-supplemented mice were subjected to CSDS, and social and emotional behaviors were assessed, together with long-term depression plasticity in accumbal medium spiny neurons. Overall, mice fed with n-3 PUFA supplementation displayed an emotional behavior profile and electrophysiological properties of medium spiny neurons which was distinct from the ones displayed by mice fed with the control diet, and this, independently of CSDS. Using the social interaction index to discriminate resilient and susceptible mice in the CSDS groups, n-3 supplementation promoted resiliency. Altogether, our results pinpoint that exposure to a diet rich in LC n-3 PUFA, as compared to a diet rich in SC n-3 PUFA, influences the NAc fatty acid profile. In addition, electrophysiological properties and emotional behavior were altered in LC n-3 PUFA mice, independently of CSDS. Our results bring new insights about the effect of LC n-3 PUFA on emotional behavior and synaptic plasticity.


Assuntos
Ácidos Graxos Ômega-3 , Núcleo Accumbens , Animais , Dieta , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Insaturados/metabolismo , Humanos , Camundongos , Núcleo Accumbens/metabolismo
12.
J Neurochem ; 159(3): 574-589, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34482548

RESUMO

A contributing factor to the development of obesity is the consumption of a diet high in saturated fatty acids, such as palmitate. These fats induce hypothalamic neuroinflammation, which dysregulates neuronal function and induces orexigenic neuropeptide Y (Npy) to promote food intake. An inflammatory cytokine array identified multiple candidates that could mediate palmitate-induced up-regulation of Npy mRNA levels. Of these, visfatin or nicotinamide phosphoribosyltransferase (NAMPT), macrophage migratory inhibitory factor (MIF), and IL-17F were chosen for further study. Direct treatment of the neuropeptide Y/agouti-related peptide (NPY/AgRP)-expressing mHypoE-46 neuronal cell line with the aforementioned cytokines demonstrated that visfatin could directly induce Npy mRNA expression. Preventing the intracellular metabolism of palmitate through long-chain acyl-CoA synthetase (ACSL) inhibition was sufficient to block the palmitate-mediated increase in Npy gene expression. Furthermore, thin-layer chromatography revealed that in neurons, palmitate is readily incorporated into ceramides and defined species of phospholipids. Exogenous C16 ceramide, dipalmitoyl-phosphatidylcholine, and dipalmitoyl-phosphatidylethanolamine were sufficient to significantly induce Npy expression. This study suggests that the intracellular metabolism of palmitate and elevation of metabolites, including ceramide and phospholipids, are responsible for the palmitate-mediated induction of the potent orexigen Npy. Furthermore, this suggests that the regulation of Npy expression is less reliant on inflammatory cytokines per se than palmitate metabolites in a model of NPY/AgRP neurons. These lipid species likely induce detrimental downstream cellular signaling events ultimately causing an increase in feeding, resulting in an overweight phenotype and/or obesity.


Assuntos
Citocinas/farmacologia , Neuropeptídeo Y/biossíntese , Palmitatos/farmacologia , Acil Coenzima A/metabolismo , Animais , Linhagem Celular , Ceramidas/metabolismo , Meios de Cultivo Condicionados , Dieta Hiperlipídica , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Nicotinamida Fosforribosiltransferase/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
13.
J Nutr ; 151(10): 2997-3035, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34510181

RESUMO

BACKGROUND: Palmitic acid (PA; 16:0) is added to infant formula in the form of palm oil/palm olein (PO/POL) and stereospecific numbered-2 palmitate (SN2). Several studies have examined the effects of PO/POL and or SN2 in formulas on health outcomes, mainly growth, digestion, and absorption of nutrients. However, the roles of PA, PO/POL, and SN2 on neurodevelopment remains unknown. OBJECTIVES: The objective of this scoping review was to map out studies in infants fed formula with PO/POL or SN2 to identify current knowledge on the role of PA in infant nutrition, specifically neurodevelopment. METHODS: Data sources, including Medline, Embase, CAB Abstracts, and the Cochrane Database, were searched. Eligible articles were randomized controlled trials (RCTs) and observational studies examining outcomes in term singleton infants fed formula containing PO/POL or SN2. Studies examining preterm infants or infants with infections, mixed-feeding interventions, or outcomes not concerned with PO/POL or SN2 were excluded. Screening and data extraction were performed by 2 independent reviewers, and results were charted into 10 outcome categories. RESULTS: We identified 28 RCTs and 2 observational studies. Only 1 RCT examined a neurodevelopmental outcome, reporting infants fed SN2 formula had higher fine motor skill scores compared to those fed a vegetable oil formula with a lower amount of SN2; however, only after adjustment for maternal education and at an earlier, but not a later time point. Anthropometric measures do not appear to be influenced by PO/POL or SN2 within formulas. Alternatively, it was reported that infants fed PO/POL within formulas had a decreased absorption of calcium, total fat, and PA compared to those fed vegetable oil formulas. However, studies were heterogenous, making it difficult to isolate the effects of PO/POL or SN2 in formulas. CONCLUSIONS: Our review reiterates the need for future studies to address the effects of PO/POL and SN2 on neurodevelopment in infants. This study is registered at Open Science Framework as osf.io/697he.


Assuntos
Fórmulas Infantis , Palmitatos , Alimentos Formulados , Humanos , Lactente , Recém-Nascido , Óleo de Palmeira , Óleos de Plantas
14.
FASEB J ; 34(8): 10640-10656, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32579292

RESUMO

Eicosapentaenoic acid (EPA) has garnered attention after the success of the REDUCE-IT trial, which contradicted previous conclusions on EPA for cardiovascular disease risk. Here we first investigated EPA's preventative role on hyperglycemia and hyperinsulinemia. EPA ethyl esters prevented obesity-induced glucose intolerance, hyperinsulinemia, and hyperglycemia in C57BL/6J mice. Supporting NHANES analyses showed that fasting glucose levels of obese adults were inversely related to EPA intake. We next investigated how EPA improved murine hyperinsulinemia and hyperglycemia. EPA overturned the obesity-driven decrement in the concentration of 18-hydroxyeicosapentaenoic acid (18-HEPE) in white adipose tissue and liver. Treatment of obese inbred mice with RvE1, the downstream immunoresolvant metabolite of 18-HEPE, but not 18-HEPE itself, reversed hyperinsulinemia and hyperglycemia through the G-protein coupled receptor ERV1/ChemR23. To translate the findings, we determined if the effects of RvE1 were dependent on host genetics. RvE1's effects on hyperinsulinemia and hyperglycemia were divergent in diversity outbred mice that model human genetic variation. Secondary SNP analyses further confirmed extensive genetic variation in human RvE1/EPA-metabolizing genes. Collectively, the data suggest EPA prevents hyperinsulinemia and hyperglycemia, in part, through RvE1's activation of ERV1/ChemR23 in a host genetic manner. The studies underscore the need for personalized administration of RvE1 based on genetic/metabolic enzyme profiles.


Assuntos
Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Hiperglicemia/genética , Hiperglicemia/prevenção & controle , Hiperinsulinismo/genética , Hiperinsulinismo/prevenção & controle , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Intolerância à Glucose/genética , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de Quimiocinas/genética , Receptores Acoplados a Proteínas G/genética
15.
Nutr Cancer ; 73(3): 420-432, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32340493

RESUMO

Malnutrition is prevalent in gastrointestinal (GI) cancer patients, possibly due to inflammation and altered fatty acids (FA). There is a lack of research describing nutritional decline in these patients during chemotherapy. We described changes in nutritional, inflammatory, and FA status over time and factors relating to change in nutritional status according to tumor presence in 41 GI cancer patients undergoing first-line treatment over four chemotherapy visits, using linear mixed effects models. At baseline, 53% of patients were malnourished. Over time, there was a decrease in the proportion of malnourished vs. well-nourished individuals (ß= -0.564, p < 0.01). Median concentrations of plasma linoleic acid, arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid, total n-3, total n-6 and total plasma phospholipid FA increased over time. Changes over time in nutritional status based on weight (p < 0.001), fat free mass (FFM) measured by bioelectrical impedance analysis (BIA, p = 0.02), and skinfold anthropometry (FSA, p = 0.04) were significantly dependent on tumor presence. There were positive associations between weight and total n-3 (ß = 0.02, p < 0.01), FFM and IL-6 (BIA, ß = 0.028, p = 0.02; FSA, ß = 0.03, p = 0.02), and FFM and total n-6 (BIA, ß = 0.003, p = 0.01). Changes in nutritional status during chemotherapy were negatively impacted by tumor presence, and were associated with increasing concentrations of cytokines and FA.


Assuntos
Neoplasias Colorretais , Desnutrição , Composição Corporal , Neoplasias Colorretais/complicações , Neoplasias Colorretais/tratamento farmacológico , Impedância Elétrica , Ácidos Graxos , Humanos , Estado Nutricional
16.
Eur J Nutr ; 60(Suppl 1): 1-17, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34427766

RESUMO

Globally, there has been a marked increase in longevity, but it is also apparent that significant inequalities remain, especially the inequality related to insufficient 'health' to enjoy or at least survive those later years. The major causes include lack of access to proper nutrition and healthcare services, and often the basic information to make the personal decisions related to diet and healthcare options and opportunities. Proper nutrition can be the best predictor of a long healthy life expectancy and, conversely, when inadequate and/or improper a prognosticator of a sharply curtailed expectancy. There is a dichotomy in both developed and developing countries as their populations are experiencing the phenomenon of being 'over fed and under nourished', i.e., caloric/energy excess and lack of essential nutrients, leading to health deficiencies, skyrocketing global obesity rates, excess chronic diseases, and premature mortality. There is need for new and/or innovative approaches to promoting health as individuals' age, and for public health programs to be a proactive blessing and not an archaic status quo 'eat your vegetables' mandate. A framework for progress has been proposed and published by the World Health Organization in their Global Strategy and Action Plan on Ageing and Health (WHO (2017) Advancing the right to health: the vital role of law. https://apps.who.int/iris/bitstream/handle/10665/252815/9789241511384-eng.pdf?sequence=1&isAllowed=y . Accessed 07 Jun 2021; WHO (2020a) What is Health Promotion. www.who.int/healthpromotion/fact-sheet/en/ . Accessed 07 Jun 2021; WHO (2020b) NCD mortality and morbidity. www.who.int/gho/ncd/mortality_morbidity/en/ . Accessed 07 Jun 2021). Couple this WHO mandate with current academic research into the processes of ageing, and the ingredients or regimens that have shown benefit and/or promise of such benefits. Now is the time for public health policy to 'not let the perfect be the enemy of the good,' but to progressively make health-promoting nutrition recommendations.


Assuntos
Expectativa de Vida , Estado Nutricional , Dieta , Humanos , Longevidade , Políticas
17.
Pharmacol Rev ; 70(1): 12-38, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29217656

RESUMO

Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain.


Assuntos
Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Animais , Encéfalo/metabolismo , Humanos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/fisiologia
18.
J Lipid Res ; 61(1): 116-126, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31712249

RESUMO

The brain is highly enriched in the long-chain omega-3 (n-3) PUFA DHA. Due to the limited capacity for local DHA synthesis in the brain, it relies on a continual supply from the circulation to replenish metabolized DHA. Previous studies investigating brain DHA turnover and metabolism have relied on isotope tracers to determine brain fatty acid kinetics; however, this approach is cumbersome and costly. We applied natural abundance carbon isotope ratio analysis via high-precision gas chromatography combustion isotope ratio mass spectrometry, without the use of labeled tracers, to determine the half-life of brain DHA in mice following a dietary switch experiment. Mice fed diets containing either α-linolenic acid (ALA) or DHA as the sole dietary n-3 PUFA were switched onto diets containing ALA, DHA, or ALA + DHA at 6 weeks of age, while control mice were maintained on their respective background diet. We measured brain DHA carbon isotope ratios (reported as δ13CDHA signatures) over a 168-day time course. Brain δ13CDHA signatures of control mice maintained on background diets over the time course were stable (P > 0.05). Brain δ13CDHA signatures of mice switched to the DHA or ALA + DHA diet from the ALA diet changed over time, yielding brain incorporation half-lives of 40 and 34 days, respectively. These half-lives determined by natural abundance carbon isotope ratio analysis were consistent with estimates from kinetic isotope tracer studies. Our results demonstrate the feasibility of natural abundance carbon isotope ratio analysis in the study of fatty acid metabolism without the use of isotopically labeled fatty acid tracers.


Assuntos
Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/análise , Animais , Isótopos de Carbono , Dieta , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ácido alfa-Linolênico/administração & dosagem , Ácido alfa-Linolênico/metabolismo
19.
J Lipid Res ; 61(11): 1480-1490, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32826272

RESUMO

N-acylethanolamines (NAEs) are endogenous lipid-signaling molecules derived from fatty acids that regulate numerous biological functions, including in the brain. Interestingly, NAEs are elevated in the absence of fatty acid amide hydrolase (FAAH) and following CO2-induced ischemia/hypercapnia, suggesting a neuroprotective response. Tetracosahexaenoic acid (THA) is a product and precursor to DHA; however, the NAE product, tetracosahexaenoylethanolamide (THEA), has never been reported. Presently, THEA was chemically synthesized as an authentic standard to confirm THEA presence in biological tissues. Whole brains were collected and analyzed for unesterified THA, total THA, and THEA in wild-type and FAAH-KO mice that were euthanized by either head-focused microwave fixation, CO2 + microwave, or CO2 only. PPAR activity by transient transfection assay and ex vivo neuronal output in medium spiny neurons (MSNs) of the nucleus accumbens by patch clamp electrophysiology were determined following THEA exposure. THEA in the wild-type mice was nearly doubled (P < 0.05) following ischemia/hypercapnia (CO2 euthanization) and up to 12 times higher (P < 0.001) in the FAAH-KO compared with wild-type. THEA did not increase (P > 0.05) transcriptional activity of PPARs relative to control, but 100 nM of THEA increased (P < 0.001) neuronal output in MSNs of the nucleus accumbens. Here were identify a novel NAE, THEA, in the brain that is elevated upon ischemia/hypercapnia and by KO of the FAAH enzyme. While THEA did not activate PPAR, it augmented the excitability of MSNs in the nucleus accumbens. Overall, our results suggest that THEA is a novel NAE that is produced in the brain upon ischemia/hypercapnia and regulates neuronal excitation.


Assuntos
Etanolaminas/metabolismo , Isquemia/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Amidoidrolases/deficiência , Amidoidrolases/metabolismo , Animais , Dióxido de Carbono/metabolismo , Etanolaminas/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/química , Fármacos Neuroprotetores/química
20.
Brain Behav Immun ; 87: 679-688, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32135194

RESUMO

Neuroinflammation is thought to be important in the progression of Alzheimer's disease (AD). To evaluate cerebral inflammation radioligands that target TSPO, a translocator protein strongly expressed in microglia and macrophages during inflammation, can be used in conjunction with positron emission tomography (PET) imaging. In AD patients, neuroinflammation is up-regulated compared to both healthy volunteers as well as to subjects with amnestic Mild Cognitive Impairment. Peripheral biomarkers, such as serum cytokines and total fatty acids (FAs), can also be indicative of the inflammatory state of subjects with neurodegenerative disorders. To understand whether peripheral biomarkers are predictive of neuroinflammation we conducted a secondary exploratory analysis of two TSPO imaging studies conducted in subjects with AD, aMCI and aged matched healthy volunteers. We examined the association between candidate peripheral biomarkers (including amyloid beta, cytokines and serum total fatty acids) with brain TSPO levels. Our results showed that serum IL-6 and IL-10 are higher in AD compared to the aMCI and healthy volunteers while levels of some fatty acids are modulated during the disease. A limited number of associations were observed between region-specific inflammation and fatty acids in aMCI patients, and between amyloid beta 42 and brain inflammation in AD, however no associations were present with systemic cytokines. Our study suggests that while TSPO binding and systemic IL-6 and IL-10 were elevated in AD, serum amyloid beta, cytokines and fatty acids were generally not predictive of the disease nor correlated with neuroinflammation.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnóstico por imagem , Citocinas , Ácidos Graxos , Humanos , Tomografia por Emissão de Pósitrons , Receptores de GABA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA