Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 139(17): 174904, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24206331

RESUMO

A microscopic mechanism governing the initiating step in the high-field aging of crystalline polyethylene is proposed, based on density functional calculations and ab initio molecular dynamics simulations. It is assumed that electrons, holes, and excitons are present in the system. While the additional individual electrons or holes are not expected to lead to significant degradation, the presence of triplet excitons are concluded to be rather damaging. The electron and hole states of the exciton localize on a distorted region of polyethylene, significantly weakening nearby C-H bonds and facilitating C-H bond scission. The barrier to cleavage of the weakened C-H bonds is estimated and is comparable to the thermal energy, suggesting that this mechanism may be responsible for the degradation of polyethylene when placed under electrical stress, e.g., in high-voltage cables.

2.
Nano Lett ; 12(9): 4530-9, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22845819

RESUMO

We report the discovery of unintentional phosphorus (P) doping when tri-n-octylphosphine (TOP) ligands are used in Ni nanoparticle synthesis, which is the most common method for monodisperse Ni nanoparticle synthesis. The nanoparticles appear pure face-centered cubic (fcc) Ni in X-ray diffraction despite the surprisingly high level (5 atomic %) of P. We find that the P doping follows a direct relationship with increased reaction time and temperature and that the P doping can be estimated with the degree of lattice expansion shown from a peak shift in the XRD spectrum. Through EXAFS modeling and density-functional (DFT) calculations of defect formation energies we find that the P atoms are preferentially located on the fcc lattice as substitutional dopants with oxidation state of zero. Magnetic and catalytic properties are shown to be greatly affected by this doping; DFT calculations show magnetization losses in the Ni system, as well as in Fe and Co systems. These findings are likely relevant for other metal syntheses that employ phosphine ligands.


Assuntos
Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Modelos Químicos , Modelos Moleculares , Níquel/química , Fosfinas/química , Fósforo/química , Simulação por Computador , Teste de Materiais , Tamanho da Partícula
3.
J Am Chem Soc ; 133(9): 3131-8, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21306161

RESUMO

The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order.


Assuntos
Chumbo/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Sulfetos/química , Anisotropia , Coloides/química , Ligantes , Propriedades de Superfície
4.
ACS Nano ; 6(3): 2118-27, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22329695

RESUMO

Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind to the nanocrystal surface in the form of lead oleate. The Wulff construction predicts the thermodynamic equilibrium shape of the PbSe nanocrystals. The equilibrium shape is a function of the ligand surface coverage, which can be controlled by changing the concentration of oleic acid during synthesis. The different binding energy of the ligand on the {100} and {111} facets results in different equilibrium ligand coverages on the facets, and a transition in the equilibrium shape from octahedral to cubic is predicted when increasing the ligand concentration during synthesis.


Assuntos
Nanopartículas/química , Chumbo/química , Ligantes , Modelos Moleculares , Conformação Molecular , Ácido Oleico/química , Compostos de Selênio/química , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA