RESUMO
Penguins are a remarkable group of birds, with the 18 extant species living in diverse climatic zones from the tropics to Antarctica. The timing of the origin of these extant penguins remains controversial. Previous studies based on DNA sequences and fossil records have suggested widely differing times for the origin of the group. This has given rise to widely differing biogeographic narratives about their evolution. To resolve this problem, we sequenced five introns from 11 species representing all genera of living penguins. Using these data and other available DNA sequences, together with the ages of multiple penguin fossils to calibrate the molecular clock, we estimated the age of the most recent common ancestor of extant penguins to be 20.4 Myr (17.0-23.8 Myr). This time is half of the previous estimates based on molecular sequence data. Our results suggest that most of the major groups of extant penguins diverged 11-16 Ma. This overlaps with the sharp decline in Antarctic temperatures that began approximately 12 Ma, suggesting a possible relationship between climate change and penguin evolution.
Assuntos
Evolução Biológica , Íntrons , Spheniscidae/genética , Spheniscidae/fisiologia , Fatores de Tempo , Animais , Regiões Antárticas , Teorema de Bayes , Calibragem , Mudança Climática , Fósseis , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
The extinct Huia (Heteralocha acutirostris) of New Zealand represents the most extreme example of beak dimorphism known in birds. We used a combination of nuclear genotyping methods, molecular sexing, and morphometric analyses of museum specimens collected in the late 19(th) and early 20(th) centuries to quantify the sexual dimorphism and population structure of this extraordinary species. We report that the classical description of Huia as having distinctive sex-linked morphologies is not universally correct. Four Huia, sexed as females had short beaks and, on this basis, were indistinguishable from males. Hence, we suggest it is likely that Huia males and females were indistinguishable as juveniles and that the well-known beak dimorphism is the result of differential beak growth rates in males and females. Furthermore, we tested the prediction that the social organisation and limited powers of flight of Huia resulted in high levels of population genetic structure. Using a suite of microsatellite DNA loci, we report high levels of genetic diversity in Huia, and we detected no significant population genetic structure. In addition, using mitochondrial hypervariable region sequences, and likely mutation rates and generation times, we estimated that the census population size of Huia was moderately high. We conclude that the social organization and limited powers of flight did not result in a highly structured population.