Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 144: 109248, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030028

RESUMO

Columnaris disease continues to inflict substantial losses among freshwater cultured species since its first description one hundred years ago. The experimental and anecdotal evidence suggests an expanded range and rising virulence of columnaris worldwide due to the warming global climate. The channel catfish (Ictalurus punctatus) are particularly vulnerable to columnaris. A recently developed live attenuated vaccine (17-23) for Flavobacterium columnare (now Flavobacterium covae sp. nov.) demonstrated superior protection for vaccinated catfish against genetically diverse columnaris isolates. In this study, we aimed to elucidate the molecular mechanisms and patterns of immune evasion and host manipulation linked to virulence by comparing gene expression changes in the host after the challenge with a virulent (BGSF-27) or live attenuated F. covae sp. nov. vaccine (17-23). Thirty-day-old fry were accordingly challenged with either virulent or vaccine isolates. Gill tissues were collected at 0 h (control), 1 h, and 2 h post-infection, which are two critical time points in early host-pathogen interactions. Transcriptome profiling of the gill tissues revealed a larger number (518) of differentially expressed genes (DEGs) in vaccine-exposed fish than those exposed to the virulent pathogen (321). Pathway analyses suggested potent suppression of early host immune responses by the virulent isolate through a higher expression of nuclear receptor corepressors (NCoR) responsible for antagonizing macrophage and T-cell signaling. Conversely, in vaccinated fry, we observed induction of Ca2+/calmodulin-dependent protein kinase II (CAMKII), responsible for clearing NCoR, and commensurate up-regulation of transcription factor AP-1 subunits, c-Fos, and c-Jun. As in mammalian systems, AP-1 expression was connected with a broad immune activation in vaccinated fry, including induction of CC chemokines, proteinases, iNOS, and IL-12b. Relatedly, divergent expression patterns of Src tyrosine kinase Lck, CD44, and CD28 indicated a delay or suppression of T-cell adhesion and activation in fry exposed to the virulent isolate. Broader implications of these findings will be discussed. The transcriptomic differences between virulent and attenuated bacteria may offer insights into how the host responds to the vaccination or infection and provide valuable knowledge to understand the early immune mechanisms of columnaris disease in aquaculture.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Ictaluridae , Animais , Vacinas Atenuadas , Flavobacterium/fisiologia , Mamíferos
2.
J Fish Dis ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214100

RESUMO

Flavobacterium covae and virulent Aeromonas hydrophila are prevalent bacterial pathogens within the US catfish industry that can cause high mortality in production ponds. An assessment of in vivo bacterial coinfection with virulent A. hydrophila (ML09-119) and F. covae (ALG-00-530) was conducted in juvenile channel catfish (Ictalurus punctatus). Catfish were divided into seven treatments: (1) mock control; (2) and (3) high and low doses of virulent A. hydrophila; (4) and (5) high and low doses of F. covae; (6) and (7) simultaneous challenge with high and low doses of virulent A. hydrophila and F. covae. In addition to the mortality assessment, anterior kidney and spleen were collected to evaluate immune gene expression, as well as quantify bacterial load by qPCR. At 96 h post-challenge (hpc), the high dose of virulent A. hydrophila infection (immersed in 2.3 × 107 CFU mL-1 ) resulted in cumulative percent mortality (CPM) of 28.3 ± 9.5%, while the high dose of F. covae (immersed in 5.2 × 106 CFU mL-1 ) yielded CPM of 23.3 ± 12.9%. When these pathogens were delivered in combination, CPM significantly increased for both the high- (98.3 ± 1.36%) and low-dose combinations (76.7 ± 17.05%) (p < .001). Lysozyme activity was found to be different at 24 and 48 hpc, with the high-dose vAh group demonstrating greater levels than unexposed control fish at each time point. Three proinflammatory cytokines (tnfα, il8, il1b) demonstrated increased expression levels at 48 hpc. These results demonstrate the additive effects on mortality when these two pathogens are combined. The synthesis of these mortality and health metrics advances our understanding of coinfections of these two important catfish pathogens and will aid fish health diagnosticians and channel catfish producers in developing therapeutants and prevention methods to control bacterial coinfections.

3.
Fish Shellfish Immunol ; 132: 108502, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36565998

RESUMO

Vibrio parahaemolyticus is a Gram-negative bacterium commonly found in marine and estuarine environments and is endemic among the global shrimp aquaculture industry. V. parahaemolyticus proteins PirA and PirB have been determined to be major virulence factors that contribute significantly to the development of acute hepatopancreatic necrosis disease. Our previous work had demonstrated the lethality of recombinant PirA and PirB proteins to Pacific white shrimp (Liptopenaeus vannamei). To understand the host response to these proteins, recombinant PirA and PirB proteins were administered using a reverse gavage method and individual shrimp were then sampled over time. Shrimp hepatopancreas libraries were generated and RNA sequencing was performed on the control and recombinant PirA/B-treated samples. Differentially expressed genes were identified among the assayed time points. Differentially expressed genes that were co-expressed at the later time points (2-, 4- and 6-h) were also identified and gene associations were established to predict functional physiological networks. Our analysis reveals that the recombinant PirA and PirB proteins have likely initiated an early host response involving several cell survival signaling and innate immune processes.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Proteínas de Bactérias/genética , Vibrio parahaemolyticus/fisiologia , Fatores de Virulência , Aquicultura , Perfilação da Expressão Gênica/veterinária , Doença Aguda
4.
J Fish Dis ; 46(10): 1137-1149, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37422900

RESUMO

Biofloc technology is a rearing technique that maintains desired water quality by manipulating carbon and nitrogen and their inherent mixture of organic matter and microbes. Beneficial microorganisms in biofloc systems produce bioactive metabolites that may deter the growth of pathogenic microbes. As little is known about the interaction of biofloc systems and the addition of probiotics, this study focused on this integration to manipulate the microbial community and its interactions within biofloc systems. The present study evaluated two probiotics (B. velezensis AP193 and BiOWiSH FeedBuilder Syn 3) for use in Nile tilapia (Oreochromis niloticus) culture in a biofloc system. Nine independent 3785 L circular tanks were stocked with 120 juveniles (71.4 ± 4.4 g). Tilapia were fed for 16 weeks and randomly assigned three diets: a commercial control diet or a commercial diet top-coated with either AP193 or BiOWiSH FeedBuilder Syn3. At 14 weeks, the fish were challenged with a low dose of Streptococcus iniae (ARS-98-60, 7.2 × 107 CFU mL-1 , via intraperitoneal injection) in a common garden experimental design. At 16 weeks, the fish were challenged with a high dose of S. iniae (6.6 × 108 CFU mL-1 ) in the same manner. At the end of each challenge trial, cumulative per cent mortality, lysozyme activity and expression of 4 genes (il-1ß, il6, il8 and tnfα) from the spleen were measured. In both challenges, the mortalities of the probiotic-fed groups were significantly lower (p < .05) than in the control diet. Although there were some strong trends, probiotic applications did not result in significant immune gene expression changes related to diet during the pre-trial period and following exposure to S. iniae. Nonetheless, overall il6 expression was lower in fish challenged with a high dose of ARS-98-60, while tnfα expression was lower in fish subjected to a lower pathogen dose. Study findings demonstrate the applicability of probiotics as a dietary supplement for tilapia reared in biofloc systems.


Assuntos
Ciclídeos , Doenças dos Peixes , Probióticos , Infecções Estreptocócicas , Animais , Streptococcus iniae , Fator de Necrose Tumoral alfa , Interleucina-6 , Doenças dos Peixes/prevenção & controle , Suplementos Nutricionais , Dieta/veterinária , Ração Animal/análise , Resistência à Doença , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária
5.
Microb Pathog ; 172: 105787, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126790

RESUMO

Vibrio parahaemolyticus (Vpara) is the causative agent of Acute Hepatopancreatic Necrosis Disease (AHPND), or Early Mortality Syndrome (EMS) in shrimp. Shrimp, like other invertebrates, lack an adaptive immune system and depend solely on innate immunity against invading pathogens. To better understand the defense mechanisms of shrimp to this problematic pathogen, we evaluated the changes in hematology, immunology and biochemical values of the hemolymph from shrimp challenged with V. parahaemolyticus up to 8 days post-challenge. Thirty-six shrimp (12 g) were distributed in 9 tanks (75 L), divided into three groups (non-challenged, challenged with 5 × 102 cfu/shrimp and challenged with 1 × 103 cfu/shrimp) in triplicate. Pacific white shrimp, Litopenaeus vannamei, were administered an inoculum of V. parahaemolyticus under the shell between the 5th and 6th abdominal segment to assess cellular and humoral immune responses. Total hemocyte count (THC) significantly decreased in shrimp challenged with Vpara at 6 h, 12 h and 24 h-post infection. Hemocyte lysate phenoloxidase (PO) activity in Vpara-challenged shrimp at 48 h post challenge was significantly increased compared to that of control shrimp. No significant differences were observed in total plasma protein between plasma from control and Vpara-challenged shrimp. However, shrimp challenged with 5 × 102, and 1 × 103 cfu/shrimp had significantly lower hemocyanin at 6 h and 48 h sampling point, respectively. At 24 h post-challenge, the ≥140 kDa and 70 kDa bands from SDS-PAGE of hemocyanin-concentrated hemolymph lysate samples showed a higher and lower intensity, respectively, in Vpara-challenged group than those of the control group. Plasma from Vpara-challenged shrimp at 6 h and 12 h-post infection significantly suppressed V. parahaemolyticus growth. However, significantly less bacterial growth suppression was observed in plasma of shrimp challenged with higher dose compared to control shrimp at the 192 h post-challenge point. Plasma chemistry parameters did not significantly differ among treatments. The changes observed in hemolymph parameters may be useful indicators of the health status of shrimp.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Proteínas Sanguíneas , Hemocianinas , Imunidade Inata , Monofenol Mono-Oxigenase , Penaeidae/microbiologia
6.
J Fish Dis ; 45(1): 99-105, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34590712

RESUMO

Fish-derived antimicrobial peptides are an important part of the innate immune system due to their potent antimicrobial properties. Piscidins are a class of antimicrobial peptides first described in hybrid striped bass (Morone chrysops x Morone saxatilis) but have also been identified in many other fish species. Previous work demonstrated the broad antimicrobial activity of piscidins against Gram-negative and Gram-positive bacterial species. This study sought to determine the extent to which class I (striped bass piscidin 1, white bass piscidin 1 and striped bass/white bass piscidin 3) and class II (striped bass piscidin 4 and white bass piscidin 5) piscidins inhibit biofilm formation of different Gram-negative bacteria. In general, the class I and II piscidins demonstrate potent activity against Escherichia coli and Flavobacterium columnare biofilms. The class II piscidins showed more activity against E. coli and F. columnare isolates than did the class I piscidins. The piscidins in general were much less effective against inhibiting Aeromonas hydrophila and A. veronii biofilm growth. Only the class I piscidins showed significant growth inhibition among the Aeromonas spp. examined.


Assuntos
Bass , Doenças dos Peixes , Animais , Peptídeos Antimicrobianos , Biofilmes , Escherichia coli , Doenças dos Peixes/tratamento farmacológico
7.
BMC Microbiol ; 21(1): 8, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407117

RESUMO

BACKGROUND: Hypervirulent Aeromonas hydrophila (vAh) is an emerging pathogen in freshwater aquaculture that results in the loss of over 3 million pounds of marketable channel catfish, Ictalurus punctatus, and channel catfish hybrids (I. punctatus, ♀ x blue catfish, I. furcatus, ♂) each year from freshwater catfish production systems in Alabama, U.S.A. vAh isolates are clonal in nature and are genetically unique from, and significantly more virulent than, traditional A. hydrophila isolates from fish. Even with the increased virulence, natural infections cannot be reproduced in aquaria challenges making it difficult to determine modes of infection and the pathophysiology behind the devastating mortalities that are commonly observed. Despite the intimate connection between environmental adaptation and plastic response, the role of environmental adaption on vAh pathogenicity and virulence has not been previously explored. In this study, secreted proteins of vAh cultured as free-living planktonic cells and within a biofilm were compared to elucidate the role of biofilm growth on virulence. RESULTS: Functional proteolytic assays found significantly increased degradative activity in biofilm secretomes; in contrast, planktonic secretomes had significantly increased hemolytic activity, suggesting higher toxigenic potential. Intramuscular injection challenges in a channel catfish model showed that in vitro degradative activity translated into in vivo tissue destruction. Identification of secreted proteins by HPLC-MS/MS revealed the presence of many putative virulence proteins under both growth conditions. Biofilm grown vAh produced higher levels of proteolytic enzymes and adhesins, whereas planktonically grown cells secreted higher levels of toxins, porins, and fimbrial proteins. CONCLUSIONS: This study is the first comparison of the secreted proteomes of vAh when grown in two distinct ecological niches. These data on the adaptive physiological response of vAh based on growth condition increase our understanding of how environmental niche partitioning could affect vAh pathogenicity and virulence. Increased secretion of colonization factors and degradative enzymes during biofilm growth and residency may increase bacterial attachment and host invasiveness, while increased secretion of hemolysins, porins, and other potential toxins under planktonic growth (or after host invasion) could result in increased host mortality. The results of this research underscore the need to use culture methods that more closely mimic natural ecological habitat growth to improve our understanding of vAh pathogenesis.


Assuntos
Aeromonas hydrophila/crescimento & desenvolvimento , Aeromonas hydrophila/patogenicidade , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Infecções por Bactérias Gram-Negativas/veterinária , Ictaluridae/microbiologia , Aeromonas hydrophila/genética , Aeromonas hydrophila/metabolismo , Alabama , Animais , Aquicultura , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Técnicas Bacteriológicas , Cromatografia Líquida de Alta Pressão , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Plâncton , Proteômica , Espectrometria de Massas em Tandem , Virulência , Sequenciamento Completo do Genoma
8.
Microb Pathog ; 155: 104886, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33915208

RESUMO

Acute hepatopancreatic necrosis disease (AHPND), caused by emerging strains of Vibrio Parahaemolyticus, is of concern in shrimp aquaculture. Secreted proteins PirA and PirB, encoded by a plasmid harbored in V. parahaemolyticus, were determined to be the major virulence factors that induce AHPND. To better understand pathogenesis associated with PirA and PirB, recombinant proteins rPirA and rPirB were produced to evaluate their relative toxicities in shrimp. By challenging shrimp at concentration of 3 µM with reverse gavage method, rPirA and rPirB (approximately 0.4 and 1.5 µg per g of body weight, respectively) caused 27.8 ± 7.8% and 33.3 ± 13.6% mortality, respectively; combination of 3 µM rPirA and rPirB resulted in 88.9 ± 7.9% mortality. Analysis of protein mobility in native gel revealed that rPirB was apparently in the form of monomer while rPirA was oligomerized as an octamer-like macromolecule, suggesting that inter- and intra-molecular interactions between rPirA and rPirB enhanced the toxic effect. An attempt to block or reduce rPirA activity with a putative receptor, N-acetyl-galactosamine, was unsuccessful, implying that remodeling analysis of PirA molecule, such as the octamer observed in this study, is necessary. Results of this study provided new insight into toxic mechanism of PirA and PirB and shall help design strategic antitoxin methods against AHPND in shrimp.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Plasmídeos , Alimentos Marinhos , Vibrio parahaemolyticus/genética , Fatores de Virulência/genética
9.
J Fish Dis ; 44(2): 161-169, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33006773

RESUMO

Columnaris disease generates substantial losses of many freshwater fish species; one is the hybrid striped bass. The ubiquitous aquatic bacterium Flavobacterium columnare can be highly effective in biofilm formation on fish skin and gills. Previous research showed a difference between columnaris disease susceptibility of hybrid striped bass (Morone saxatilis × M. chrysops) and white bass (M. chrysops). To understand these differential susceptibilities and possible mucosal relationship, we assessed total bacterial growth and biofilm formation with mucus derived from each moronid parental species: white bass and striped bass (M. saxatilis). Differential susceptibility was confirmed of the other parent species, the striped bass (M. saxatilis). In addition to intraspecies investigations, individual hybrid striped bass mucosal affects were also studied for deferential responses to bacterial growth and biofilm formation. Species- and concentration-dependent differences were detected in the total growth of the bacteria to host mucus. Our data suggest that bass mucus can significantly affect biofilm formation with the F. columnare isolate tested. There appears to be a correlation between the bacteria's response of growth and biofilms and bass species susceptibility. This study provides insight into our understanding of the host-pathogen interaction between F. columnare and moronids.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/crescimento & desenvolvimento , Muco/microbiologia , Animais , Bass , Biofilmes/crescimento & desenvolvimento , Doenças dos Peixes/genética , Infecções por Flavobacteriaceae/genética , Infecções por Flavobacteriaceae/microbiologia , Brânquias/microbiologia
10.
Fish Shellfish Immunol ; 106: 1031-1041, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32805416

RESUMO

Channel catfish (Ictalurus punctatus) vaccinated with pcDNA3.1-IAg52b plasmid DNA vaccine encoding immobilization antigen genes of Ichthyophthirius multifiliis (Ich) produced anti-Ich antibodies and were partially protected (20% survival) in a previous study. Here we evaluated whether a higher dose or two doses of pcDNA3.1-IAg52b vaccine could provide better protection for catfish against Ich. Fish were distributed into 6 groups and vaccinated using following schemes: 1.10 µg pcDNA3.1-IAg52b fish-1, 2.20 µg pcDNA3.1-IAg52b fish-1, 3. two doses of 10 µg pcDNA3.1-IAg52b fish-1 with 7 days between doses, 4.20 µg pcDNA3.1 fish-1 (mock-vaccinated control), 5.15,000 live theronts fish-1 (positive control), and 6. non-vaccinated and non-challenge control. Parasite infection levels, serum anti-Ich antibody levels, fish mortality and immune-related gene expression were determined during the trial. Fish vaccinated with a single dose of 20 µg pcDNA3.1-IAg52b fish-1 or two doses of 10 µg fish-1 had higher anti-Ich antibody levels than fish receiving a single dose of 10 µg fish-1. Survival was significantly higher in fish receiving 20 µg vaccine fish-1 (35.6%) or 2 doses of 10 µg fish-1 (48.9%) than fish injected with a single dose of 10 µg fish-1 (15.6%) or mock-vaccinated control (0%). Fish vaccinated at the dose 20 µg fish-1 had higher expression of vaccine DNA in muscle than fish vaccinated with 10 µg fish-1. Fish vaccinated with the DNA vaccine showed higher up-regulation than mock-vaccinated control in the expression of IgM, CD4, MHC I and TcR-α genes during most of time points after vaccination. Further studies are needed to improve efficacy of DNA vaccines by using multiple antigens in the DNA vaccines.


Assuntos
Antígenos de Protozoários/imunologia , Infecções por Cilióforos/prevenção & controle , Doenças dos Peixes/prevenção & controle , Hymenostomatida/imunologia , Ictaluridae/imunologia , Proteínas de Protozoários/imunologia , Vacinas de DNA , Animais , Infecções por Cilióforos/genética , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/veterinária , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Ictaluridae/genética , Ictaluridae/parasitologia , Músculos
11.
Nature ; 511(7508): 246-50, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24909994

RESUMO

Cancer stem cells (CSCs) have been reported in various cancers, including in skin squamous-cell carcinoma (SCC). The molecular mechanisms regulating tumour initiation and stemness are still poorly characterized. Here we find that Sox2, a transcription factor expressed in various types of embryonic and adult stem cells, was the most upregulated transcription factor in the CSCs of squamous skin tumours in mice. SOX2 is absent in normal epidermis but begins to be expressed in the vast majority of mouse and human pre-neoplastic skin tumours, and continues to be expressed in a heterogeneous manner in invasive mouse and human SCCs. In contrast to other SCCs, in which SOX2 is frequently genetically amplified, the expression of SOX2 in mouse and human skin SCCs is transcriptionally regulated. Conditional deletion of Sox2 in the mouse epidermis markedly decreases skin tumour formation after chemical-induced carcinogenesis. Using green fluorescent protein (GFP) as a reporter of Sox2 transcriptional expression (SOX2-GFP knock-in mice), we showed that SOX2-expressing cells in invasive SCC are greatly enriched in tumour-propagating cells, which further increase upon serial transplantations. Lineage ablation of SOX2-expressing cells within primary benign and malignant SCCs leads to tumour regression, consistent with the critical role of SOX2-expressing cells in tumour maintenance. Conditional Sox2 deletion in pre-existing skin papilloma and SCC leads to tumour regression and decreases the ability of cancer cells to be propagated upon transplantation into immunodeficient mice, supporting the essential role of SOX2 in regulating CSC functions. Transcriptional profiling of SOX2-GFP-expressing CSCs and of tumour epithelial cells upon Sox2 deletion uncovered a gene network regulated by SOX2 in primary tumour cells in vivo. Chromatin immunoprecipitation identified several direct SOX2 target genes controlling tumour stemness, survival, proliferation, adhesion, invasion and paraneoplastic syndrome. We demonstrate that SOX2, by marking and regulating the functions of skin tumour-initiating cells and CSCs, establishes a continuum between tumour initiation and progression in primary skin tumours.


Assuntos
Carcinoma de Células Escamosas , Transformação Celular Neoplásica/genética , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Neoplasias Cutâneas , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Adesão Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes/genética , Camundongos , Camundongos Endogâmicos , Fatores de Transcrição SOXB1/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
12.
Vet Res ; 50(1): 24, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30971289

RESUMO

The impact of cortisol on Flavobacterium columnare biofilm formation was explored. Firstly, the dynamics of biofilm formation by one highly (HV) and one low virulent (LV) F. columnare isolate with and without the stress hormone cortisol under microfluidic flow conditions was characterized. This to confirm that F. columnare cells could form biofilm under cortisol supplementation, and to compare the temporal and structural differences between different treatment groups. One trial revealed that in both isolates cell aggregates resembling biofilms occurred within 7-h post-inoculation. Consequently, cell clusters were sloughed away, followed by a rebuilding of bacterial cell aggregates, suggestive for a high spreading capacity. While the HV isolate revealed cell aggregates formed upstream at all time-points, for the LV isolate this was only seen upon cortisol supplementation. Secondly, the transcriptional effect of genes (gldK, gldL, gldM, gldN, sprA, sprE, sprT, and porV) belonging to the Type IX secretion system involved in gliding motility was investigated in planktonic and biofilm cells of a HV and LV isolate to which no, a low (LD) or high (HD) dose of cortisol was added. Significantly lower expression of gliding genes gldK, gldL, gldM and gldN, and of protein secretion regulator porV was seen in the LV isolate planktonic cells supplemented with a HD-cortisol. The LV isolate biofilm cells treated with the HD-cortisol showed a significant upregulation of sprT, encoding mobile surface adhesion important in bacterial colonization. This is the first evidence for the co-regulatory effect of cortisol on biofilm formation and F. columnare gliding gene expression.


Assuntos
Aderência Bacteriana/genética , Biofilmes/crescimento & desenvolvimento , Flavobacterium/fisiologia , Expressão Gênica , Genes Bacterianos/fisiologia , Hidrocortisona/metabolismo , Animais , Biofilmes/efeitos dos fármacos , Carpas/microbiologia , Relação Dose-Resposta a Droga , Flavobacterium/efeitos dos fármacos , Flavobacterium/genética , Flavobacterium/patogenicidade , Hidrocortisona/administração & dosagem , Dispositivos Lab-On-A-Chip/veterinária , Plâncton/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento , Virulência
13.
Fish Shellfish Immunol ; 86: 223-229, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30453044

RESUMO

Motile Aeromonas septicemia (MAS), caused by new virulent Aeromonas hydrophila (vAh) strains, has been one of the major diseases in channel catfish in recent years. Previous studies showed that channel catfish developed immunity against vAh infection after immunization with the pathogen's extracellular proteins (ECP). To understand the mechanisms associated with the immunity, anti-ECP fish serum (antiserum) was analyzed in this study. Our results revealed that the antiserum elicited agglutination of both ECP and cells of vAh. Five fish proteins were identified in ECP agglutinants, including two innate immunity associated proteins (serotransferrin and rhamnose-binding lectin), two immunoglobulin M (IgM) molecules (IgM heavy chain and light chain) and a constitutively-produced protein (warm temperature acclimation protein). More than 68 vAh proteins in ECP were recognized and caused to aggregate by IgM in the antiserum. IgM was isolated from vAh cell agglutinants and the native IgM was shown to form a tetramer that was responsible for bacterial agglutination. Immunoblotting analysis indicated that the isolated native IgM was able to recognize some proteins in ECP, such as aerolysin and hemolysin (in the form of a high molecular weight heterologous polymer). Gene expression analysis by quantitative PCR showed that fish immunized with vAh ECP had more transcripts of genes coding for IgM, serotransferrin and rhamnose binding lectin than mock-immunized fish. Both innate and antibody-mediated immune responses in serum and expressed genes contributed to fish immunity upon immunization with ECP. Results of this study shed light on the versatility of vAh antigens and catfish IgM, which would help identify specific antigens for vaccine development and antigen specific antibodies in catfish.


Assuntos
Aeromonas hydrophila/imunologia , Proteínas de Bactérias/imunologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Ictaluridae/imunologia , Testes de Aglutinação/veterinária , Animais , Doenças dos Peixes/imunologia , Proteínas de Peixes , Infecções por Bactérias Gram-Negativas/imunologia , Soros Imunes/imunologia , Imunidade Inata , Imunização/veterinária , Imunoglobulina M
14.
Fish Shellfish Immunol ; 94: 308-317, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31470140

RESUMO

The channel catfish (Ictalurus punctatus) immune response against Ichthyophthirius multifiliis (Ich) after vaccination using plasmid DNA vaccines pcDNA3.1-IAg52a and pcDNA3.1-IAg52b, encoding Ich immobilization antigen genes was studied. Parasite infection level, serum anti-Ich antibodies level, fish mortality after theront challenge, and immune-related gene expression were measured. After in vitro transfection of walking catfish gill cells (G1b) with both pcDNA3.1-IAg52a and pcDNA3.1-IAg52b, antigens IAG52A and IAG52B were detected. During the vaccination trial, 76-fold increase in the Iag52b gene expression was observed in the vaccinated fish group h4 post vaccination. Administration of DNA vaccines by IM injection induced significant gene up-regulation in the head kidney, including immunoglobulin M (IgM), cluster of differentiation 4 (CD4), major histocompatibility I (MHC I), and T cell receptor α (TcR-α) from h4 to d5 post immunization. Fish vaccinated with DNA vaccines or theronts showed increased gene expression of the cytokine interferon (IFN-γ), complement component 3 (C3), and toll-like receptor-1 (TLR-1). Anti-Ich antibodies were detected in fish received pcDNA3.1-IAg52a, pcDNA3.1-IAg52b and the combination of both vaccines d10 post vaccination. Fish vaccinated with pcDNA3.1-IAg52b showed mild parasite infection level, partial survival (20%) and longer mean day to death (MDD) after theront challenge. By contrast, a heavy parasite load, 0% survival and short MDD were observed in the sham vaccinated control fish that received pcDNA3.1 (plasmid without genes encoding Ich immobilization antigen). Further research is needed to improve DNA vaccines for Ich that can induce strong protective immunity in fish. Suggested studies include improved transfection efficiency, use of appropriate adjuvants and including additional parasite antigen genes in the plasmid.


Assuntos
Infecções por Cilióforos/veterinária , Doenças dos Peixes/prevenção & controle , Hymenostomatida/imunologia , Ictaluridae , Imunidade Inata , Vacinas Protozoárias/farmacologia , Vacinação/veterinária , Imunidade Adaptativa , Animais , Antígenos de Protozoários/farmacologia , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/prevenção & controle , Doenças dos Peixes/imunologia , Proteínas de Protozoários/farmacologia , Vacinas de DNA/farmacologia
15.
J Fish Dis ; 42(3): 371-377, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30644117

RESUMO

The antimicrobial activity and mode of action of chitosan were evaluated against Streptococcus iniae, a pathogenic Gram-positive bacterium of fish worldwide. Cell proliferation kinetics were examined following exposure to varying concentrations of chitosan. The action of chitosan on S. iniae was also investigated by measuring agglutination activity, conductivity, and extracellular and intracellular bacterial adenosine triphosphate (ATP) levels. Chitosan exhibited antibacterial activity against S. iniae at concentrations of 0.1% and above and was lethal at a concentration of 0.4% and higher. The mechanism of antibacterial activity of chitosan at the inhibitory level of bacterial growth appears to hinge upon the interaction between chitosan and the oppositely charged bacterial surface. This interplay causes agglutination, which was readily observed grossly and microscopically. After interacting with the cell surface via adsorption, an efflux of intracellular ATP was documented, which suggests that chitosan disrupts the bacterial cell causing leakage of cytosolic contents and ultimately cell death. Results suggest chitosan may be worth evaluating as a natural alternative to antibiotic against S. iniae infection of fish.


Assuntos
Anti-Infecciosos/farmacologia , Quitosana/farmacologia , Streptococcus iniae/efeitos dos fármacos , Trifosfato de Adenosina/análise , Aglutinação/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Streptococcus iniae/citologia
16.
J Acoust Soc Am ; 146(4): 2303, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31672010

RESUMO

One of the commonly investigated transformation acoustic device is the ground cloak, which conceals a scattering object on a reflecting surface. Multiple studies have numerically simulated acoustic ground cloaks, but because of the challenges associated with realizing a homogeneous anisotropic metamaterial, only two acoustic ground cloaks have been built and tested. Perforated plastic plates in air were used to construct two and three dimensional ground cloaks and alternating layers of brass and water were used to construct an extended area ground cloak underwater. With underwater mass density anisotropy previously demonstrated for perforated steel plates, the primary focus of this article is to build and evaluate an underwater ground cloak with perforated steel plates. The cloak was evaluated at a water-air pressure release reflecting surface. The cloak successfully concealed the scattering object over a broad frequency range of 7-12 kHz.

17.
Fish Shellfish Immunol ; 72: 426-435, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29133252

RESUMO

Rhamnose-binding lectins (RBLs) are crucial elements associated with innate immune responses to infections and have been characterized from a variety of teleost fishes. Given the importance of RBL in teleost fishes, we sought to study the diversity and expression profiles of RBLs in an important cultured fish, Nile tilapia (Oreochromis niloticus) following experimental infection with Streptococcus agalactiae, a major cause of streptococcosis in farmed tilapia. In this study, four predicted RBL genes were identified from Nile tilapia and were designated as OnRBL3a, OnRBL3b, OnRBL3c, and OnRBL3d. These OnRBLs were composed of two tandem-repeated type five carbohydrate recognition domains (CRDs), classified as type IIIc, and all clustered together phylogenetically. OnRBL-CRDs shared conserved topology of eight cysteine residues, characteristic peptide motifs of -YGR- and -DPC- (or -FGR- and -DTC-), and similar exon/intron organization. OnRBLs had the highest expression in immune-related tissues, gills, intestine or liver. However, the changes of OnRBL expression in the gills and intestine at 2 h, 4 h and 24 h post S. agalactiae challenge were modest, suggesting that tilapia may not mediate the entry or confront the infection of S. agalactiae through induction of RBL genes. The observed expression pattern may be related to the RBL type and CRD composition, S. agalactiae pathogenesis, the accessibility of ligands on the bacterial surface, and/or the species of fish. OnRBLs characterized in this study were the first RBL members identified in Nile tilapia and their characterization will expand our knowledge of RBLs in immunity.


Assuntos
Ciclídeos/genética , Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Lectinas/genética , Lectinas/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Mucosa , Filogenia , Ramnose , Alinhamento de Sequência/veterinária
18.
Nature ; 488(7412): 527-30, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22854777

RESUMO

Recent studies using the isolation of a subpopulation of tumour cells followed by their transplantation into immunodeficient mice provide evidence that certain tumours, including squamous skin tumours, contain cells with high clonogenic potential that have been referred to as cancer stem cells (CSCs). Until now, CSC properties have only been investigated by transplantation assays, and their existence in unperturbed tumour growth is unproven. Here we make use of clonal analysis of squamous skin tumours using genetic lineage tracing to unravel the mode of tumour growth in vivo in its native environment. To this end, we used a genetic labelling strategy that allows individual tumour cells to be marked and traced over time at different stages of tumour progression. Surprisingly, we found that the majority of labelled tumour cells in benign papilloma have only limited proliferative potential, whereas a fraction has the capacity to persist long term, giving rise to progeny that occupy a significant part of the tumour. As well as confirming the presence of two distinct proliferative cell compartments within the papilloma, mirroring the composition, hierarchy and fate behaviour of normal tissue, quantitative analysis of clonal fate data indicates that the more persistent population has stem-cell-like characteristics and cycles twice per day, whereas the second represents a slower cycling transient population that gives rise to terminally differentiated tumour cells. Such behaviour is shown to be consistent with double-labelling experiments and detailed clonal fate characteristics. By contrast, measurements of clone size and proliferative potential in invasive squamous cell carcinoma show a different pattern of behaviour, consistent with geometric expansion of a single CSC population with limited potential for terminal differentiation. This study presents the first experimental evidence for the existence of CSCs during unperturbed solid tumour growth.


Assuntos
Linhagem da Célula , Rastreamento de Células , Neoplasias Cutâneas/patologia , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Contagem de Células , Diferenciação Celular , Proliferação de Células , Células Clonais/metabolismo , Células Clonais/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Modelos Biológicos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Cutâneas/genética , Processos Estocásticos , Microambiente Tumoral
19.
Proc Natl Acad Sci U S A ; 112(26): E3345-54, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26080404

RESUMO

Deviation of the ambient temperature is one of the most ubiquitous stimuli that continuously affect mammals' skin. Although the role of the warmth receptors in epidermal homeostasis (EH) was elucidated in recent years, the mystery of the keratinocyte mild-cold sensor remains unsolved. Here we report the cloning and characterization of a new functional epidermal isoform of the transient receptor potential M8 (TRPM8) mild-cold receptor, dubbed epidermal TRPM8 (eTRPM8), which is localized in the keratinocyte endoplasmic reticulum membrane and controls mitochondrial Ca(2+) concentration ([Ca(2+)]m). In turn, [Ca(2+)]m modulates ATP and superoxide (O2(·-)) synthesis in a cold-dependent manner. We report that this fine tuning of ATP and O2(·-) levels by cooling controls the balance between keratinocyte proliferation and differentiation. Finally, to ascertain eTRPM8's role in EH in vivo we developed a new functional knockout mouse strain by deleting the pore domain of TRPM8 and demonstrated that eTRPM8 knockout impairs adaptation of the epidermis to low temperatures.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Temperatura Baixa , Epiderme/metabolismo , Queratinócitos/citologia , Isoformas de Proteínas/fisiologia , Canais de Cátion TRPM/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Células Cultivadas , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Superóxidos/metabolismo
20.
J Fish Dis ; 41(9): 1395-1402, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29893005

RESUMO

Flavobacterium columnare causes columnaris disease of farmed and wild freshwater fish. Skin mucus is an important factor in early stages of columnaris pathogenesis, albeit little studied. Our objectives were to (a) characterize the terminal glycosylation pattern (TGP) of catfish mucus, (b) determine the growth of F. columnare in formulated water (FW)-containing channel catfish (Ictalurus punctatus) or hybrid catfish (Ictalurus punctatus X Ictalurus furcatus) mucus and (c) examine extracellular protease activity of two F. columnare isolates differing in virulence. The TGP of catfish mucus by lectin binding was as follows: alpha-D-mannose/alpha-D-glucose >N-acetyl-beta-D-glucosamine >N-acetyl-beta-D-glucosamine/N-acetylneuraminic acid >N-acetyl-D-galactosamine >alpha-D-galactose/N-acetyl-alpha-D-galactosamine >beta-D-galactose = alpha-L-fucose. Virulence studies demonstrated isolate AL-02-36 was highly virulent in channel catfish fry (0.1 g) with cumulative mortality of 90%-100% versus 60% for isolate ALG-00-530 at equivalent doses (~3 × 106  CFU/ml); a similar result was observed in larger (0.7 g) catfish. In multiple experiments, F. columnare replicated (2-3 logs) and survived (28 days) in formulated water-containing catfish mucus. Highly virulent isolate AL-02-36 possessed at least 2.5- to fivefold higher protease activity following growth in mucus than the less virulent ALG-00-530. Flavobacterium columnare utilized catfish mucus as a nutrient source and mucus presence modulated extracellular protease production.


Assuntos
Peixes-Gato/microbiologia , Flavobacterium/enzimologia , Flavobacterium/crescimento & desenvolvimento , Muco/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Peixes-Gato/metabolismo , Meios de Cultura/química , Meios de Cultura/farmacologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/mortalidade , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/mortalidade , Flavobacterium/efeitos dos fármacos , Flavobacterium/patogenicidade , Galactose/metabolismo , Brânquias/microbiologia , Glicosilação , Lectinas/metabolismo , Muco/química , Peptídeo Hidrolases/biossíntese , Proteólise , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA