Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 530(7589): 228-232, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26840485

RESUMO

The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 × 10(-3) and 1.42 × 10(-3) mutations per site per year. This is equivalent to 16-27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15-60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.


Assuntos
Ebolavirus/genética , Monitoramento Epidemiológico , Genoma Viral/genética , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Análise de Sequência de DNA/instrumentação , Análise de Sequência de DNA/métodos , Aeronaves , Surtos de Doenças/estatística & dados numéricos , Ebolavirus/classificação , Ebolavirus/patogenicidade , Guiné/epidemiologia , Humanos , Mutagênese/genética , Taxa de Mutação , Fatores de Tempo
2.
Nature ; 533(7601): 100-4, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27147028

RESUMO

Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4(+) and CD8(+) T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.


Assuntos
Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/fisiopatologia , Linfócitos T/imunologia , Antígeno CTLA-4/metabolismo , Feminino , Citometria de Fluxo , Guiné/epidemiologia , Doença pelo Vírus Ebola/mortalidade , Humanos , Mediadores da Inflamação/imunologia , Estudos Longitudinais , Ativação Linfocitária , Masculino , Alta do Paciente , Receptor de Morte Celular Programada 1/metabolismo , Sobreviventes , Linfócitos T/metabolismo , Carga Viral
3.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32817220

RESUMO

Lassa fever (LF) is a zoonotic viral hemorrhagic fever caused by Lassa virus (LASV), which is endemic to West African countries. Previous studies have suggested an important role for T-cell-mediated immunopathology in LF pathogenesis, but the mechanisms by which T cells influence disease severity and outcome are not well understood. Here, we present a multiparametric analysis of clinical immunology data collected during the 2017-2018 Lassa fever outbreak in Nigeria. During the acute phase of LF, we observed robust activation of the polyclonal T-cell repertoire, which included LASV-specific and antigenically unrelated T cells. However, severe and fatal LF cases were characterized by poor LASV-specific effector T-cell responses. Severe LF was also characterized by the presence of circulating T cells with homing capacity to inflamed tissues, including the gut mucosa. These findings in LF patients were recapitulated in a mouse model of LASV infection, in which mucosal exposure resulted in remarkably high lethality compared to skin exposure. Taken together, our findings indicate that poor LASV-specific T-cell responses and activation of nonspecific T cells with homing capacity to inflamed tissues are associated with severe LF.IMPORTANCE Lassa fever may cause severe disease in humans, in particular in areas of endemicity like Sierra Leone and Nigeria. Despite its public health importance, the pathophysiology of Lassa fever in humans is poorly understood. Here, we present clinical immunology data obtained in the field during the 2018 Lassa fever outbreak in Nigeria indicating that severe Lassa fever is associated with activation of T cells antigenically unrelated to Lassa virus and poor Lassa virus-specific effector T-cell responses. Mechanistically, we show that these bystander T cells express defined tissue homing signatures that suggest their recruitment to inflamed tissues and a putative role of these T cells in immunopathology. These findings open a window of opportunity to consider T-cell targeting as a potential postexposure therapeutic strategy against severe Lassa fever, a hypothesis that could be tested in relevant animal models, such as nonhuman primates.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Surtos de Doenças , Mucosa Intestinal/imunologia , Febre Lassa/imunologia , Vírus Lassa/patogenicidade , Ativação Linfocitária , Adolescente , Adulto , Idoso , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Humanos , Lactente , Recém-Nascido , Integrina beta1/genética , Integrina beta1/imunologia , Interferon gama/genética , Interferon gama/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Febre Lassa/genética , Febre Lassa/mortalidade , Febre Lassa/virologia , Vírus Lassa/crescimento & desenvolvimento , Vírus Lassa/imunologia , Proteína 1 de Membrana Associada ao Lisossomo/genética , Proteína 1 de Membrana Associada ao Lisossomo/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Nigéria/epidemiologia , Estudos Retrospectivos , Índice de Gravidade de Doença , Pele/imunologia , Pele/patologia , Pele/virologia , Análise de Sobrevida , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
4.
Nature ; 524(7563): 97-101, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26083749

RESUMO

West Africa is currently witnessing the most extensive Ebola virus (EBOV) outbreak so far recorded. Until now, there have been 27,013 reported cases and 11,134 deaths. The origin of the virus is thought to have been a zoonotic transmission from a bat to a two-year-old boy in December 2013 (ref. 2). From this index case the virus was spread by human-to-human contact throughout Guinea, Sierra Leone and Liberia. However, the origin of the particular virus in each country and time of transmission is not known and currently relies on epidemiological analysis, which may be unreliable owing to the difficulties of obtaining patient information. Here we trace the genetic evolution of EBOV in the current outbreak that has resulted in multiple lineages. Deep sequencing of 179 patient samples processed by the European Mobile Laboratory, the first diagnostics unit to be deployed to the epicentre of the outbreak in Guinea, reveals an epidemiological and evolutionary history of the epidemic from March 2014 to January 2015. Analysis of EBOV genome evolution has also benefited from a similar sequencing effort of patient samples from Sierra Leone. Our results confirm that the EBOV from Guinea moved into Sierra Leone, most likely in April or early May. The viruses of the Guinea/Sierra Leone lineage mixed around June/July 2014. Viral sequences covering August, September and October 2014 indicate that this lineage evolved independently within Guinea. These data can be used in conjunction with epidemiological information to test retrospectively the effectiveness of control measures, and provides an unprecedented window into the evolution of an ongoing viral haemorrhagic fever outbreak.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Ebolavirus/genética , Evolução Molecular , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Filogenia , Análise Espaço-Temporal , Substituição de Aminoácidos/genética , Ebolavirus/isolamento & purificação , Feminino , Guiné/epidemiologia , Doença pelo Vírus Ebola/transmissão , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Libéria/epidemiologia , Masculino , Mali/epidemiologia , Dados de Sequência Molecular , Serra Leoa/epidemiologia
5.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31413134

RESUMO

Lassa virus is genetically diverse with several lineages circulating in West Africa. This study aimed at describing the sequence variability of Lassa virus across Nigeria and inferring its spatiotemporal evolution. We sequenced and isolated 77 Lassa virus strains from 16 Nigerian states. The final data set, including previous works, comprised metadata and sequences of 219 unique strains sampled between 1969 and 2018 in 22 states. Most of this data originated from Lassa fever patients diagnosed at Irrua Specialist Teaching Hospital, Edo State, Nigeria. The majority of sequences clustered with the main Nigerian lineages II and III, while a few sequences formed a new cluster related to Lassa virus strains from Hylomyscus pamfi Within lineages II and III, seven and five sublineages, respectively, were distinguishable. Phylogeographic analysis suggests an origin of lineage II in the southeastern part of the country around Ebonyi State and a main vector of dispersal toward the west across the Niger River, through Anambra, Kogi, Delta, and Edo into Ondo State. The frontline of virus dispersal appears to be in Ondo. Minor vectors are directed northeast toward Taraba and Adamawa and south toward Imo and Rivers. Lineage III might have spread from northern Plateau State into Kaduna, Nasarawa, Federal Capital Territory, and Bauchi. One sublineage moved south and crossed the Benue River into Benue State. This study provides a geographic mapping of lineages and phylogenetic clusters in Nigeria at a higher resolution. In addition, we estimated the direction and time frame of virus dispersal in the country.IMPORTANCE Lassa virus is the causative agent of Lassa fever, a viral hemorrhagic fever with a case fatality rate of approximately 30% in Africa. Previous studies disclosed a geographical pattern in the distribution of Lassa virus strains and a westward movement of the virus across West Africa during evolution. Our study provides a deeper understanding of the geography of genetic lineages and sublineages of the virus in Nigeria. In addition, we modeled how the virus spread in the country. This knowledge allows us to predict into which geographical areas the virus might spread in the future and prioritize areas for Lassa fever surveillance. Our study not only aimed to generate Lassa virus sequences from across Nigeria but also to isolate and conserve the respective viruses for future research. Both isolates and sequences are important for the development and evaluation of medical countermeasures to treat and prevent Lassa fever, such as diagnostics, therapeutics, and vaccines.


Assuntos
Febre Lassa/virologia , Vírus Lassa/classificação , Animais , Evolução Molecular , Variação Genética , Humanos , Febre Lassa/epidemiologia , Febre Lassa/transmissão , Vírus Lassa/genética , Murinae/virologia , Nigéria/epidemiologia , Filogenia , Filogeografia
6.
J Infect Dis ; 220(2): 195-202, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30788508

RESUMO

BACKGROUND: In 2015, the laboratory at the Ebola treatment center in Coyah, Guinea, confirmed Ebola virus disease (EVD) in 286 patients. The cycle threshold (Ct) of an Ebola virus-specific reverse transcription-polymerase chain reaction assay and 13 blood chemistry parameters were measured on admission and during hospitalization. Favipiravir treatment was offered to patients with EVD on a compassionate-use basis. METHODS: To reduce biases in the raw field data, we carefully selected 163 of 286 patients with EVD for a retrospective study to assess associations between potential risk factors, alterations in blood chemistry findings, favipiravir treatment, and outcome. RESULTS: The case-fatality rate in favipiravir-treated patients was lower than in untreated patients (42.5% [31 of 73] vs 57.8% [52 of 90]; P = .053 by univariate analysis). In multivariate regression analysis, a higher Ct and a younger age were associated with survival (P < .001), while favipiravir treatment showed no statistically significant effect (P = .11). However, Kaplan-Meier analysis indicated a longer survival time in the favipiravir-treated group (P = .015). The study also showed characteristic changes in blood chemistry findings in patients who died, compared with survivors. CONCLUSIONS: Consistent with the JIKI trial, this retrospective study revealed a trend toward improved survival in favipiravir- treated patients; however, the effect of treatment was not statistically significant, except for its influence on survival time.


Assuntos
Amidas/uso terapêutico , Antivirais/uso terapêutico , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Pirazinas/uso terapêutico , Adolescente , Adulto , Criança , Pré-Escolar , Ensaios de Uso Compassivo/métodos , Feminino , Guiné , Doença pelo Vírus Ebola/virologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Carga Viral/efeitos dos fármacos , Adulto Jovem
7.
Emerg Infect Dis ; 25(10): 1977-1979, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31365854

RESUMO

Lassa virus has been identified in 3 pygmy mice, Mus baoulei, in central Benin. The glycoprotein and nucleoprotein sequences cluster with the Togo strain. These mice may be a new reservoir for Lassa virus in Ghana, Togo, and Benin.


Assuntos
Febre Lassa/veterinária , Vírus Lassa , Camundongos/virologia , Animais , Benin , Reservatórios de Doenças/virologia , Humanos , Febre Lassa/epidemiologia , Vírus Lassa/genética , Filogenia , Ratos/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Infect Dis ; 214(suppl 3): S275-S280, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27521367

RESUMO

A number of previous studies have identified antigen-presenting cells (APCs) as key targets of Ebola virus (EBOV), but the role of APCs in human Ebola virus disease (EVD) is not known. We have evaluated the phenotype and kinetics of monocytes, neutrophils, and dendritic cells (DCs) in peripheral blood of patients for whom EVD was diagnosed by the European Mobile Laboratory in Guinea. Acute EVD was characterized by reduced levels of circulating nonclassical CD16+ monocytes with a poor activation profile. In survivors, CD16+ monocytes were activated during recovery, coincident with viral clearance, suggesting an important role of this cell subset in EVD pathophysiology.


Assuntos
Células Dendríticas/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Receptores de IgG/imunologia , Células Dendríticas/virologia , Ebolavirus/isolamento & purificação , Feminino , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/fisiopatologia , Doença pelo Vírus Ebola/virologia , Humanos , Cinética , Unidades Móveis de Saúde , Monócitos/virologia , Neutrófilos/virologia , Fenótipo
9.
J Infect Dis ; 214(suppl 3): S250-S257, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27638946

RESUMO

BACKGROUND: A unit of the European Mobile Laboratory (EMLab) consortium was deployed to the Ebola virus disease (EVD) treatment unit in Guéckédou, Guinea, from March 2014 through March 2015. METHODS: The unit diagnosed EVD and malaria, using the RealStar Filovirus Screen reverse transcription-polymerase chain reaction (RT-PCR) kit and a malaria rapid diagnostic test, respectively. RESULTS: The cleaned EMLab database comprised 4719 samples from 2741 cases of suspected EVD from Guinea. EVD was diagnosed in 1231 of 2178 hospitalized patients (57%) and in 281 of 563 who died in the community (50%). Children aged <15 years had the highest proportion of Ebola virus-malaria parasite coinfections. The case-fatality ratio was high in patients aged <5 years (80%) and those aged >74 years (90%) and low in patients aged 10-19 years (40%). On admission, RT-PCR analysis of blood specimens from patients who died in the hospital yielded a lower median cycle threshold (Ct) than analysis of blood specimens from survivors (18.1 vs 23.2). Individuals who died in the community had a median Ct of 21.5 for throat swabs. Multivariate logistic regression on 1047 data sets revealed that low Ct values, ages of <5 and ≥45 years, and, among children aged 5-14 years, malaria parasite coinfection were independent determinants of a poor EVD outcome. CONCLUSIONS: Virus load, age, and malaria parasite coinfection play a role in the outcome of EVD.


Assuntos
Ebolavirus/isolamento & purificação , Epidemias , Infecções por Filoviridae/diagnóstico , Doença pelo Vírus Ebola/diagnóstico , Malária/complicações , Unidades Móveis de Saúde , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Serviços de Laboratório Clínico , Ebolavirus/genética , Feminino , Filoviridae , Infecções por Filoviridae/complicações , Infecções por Filoviridae/virologia , Guiné , Doença pelo Vírus Ebola/complicações , Doença pelo Vírus Ebola/virologia , Humanos , Lactente , Malária/parasitologia , Masculino , Pessoa de Meia-Idade , RNA Viral/sangue , Carga Viral , Adulto Jovem
12.
Sci Rep ; 13(1): 12859, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553373

RESUMO

Bats are described as the natural reservoir host for a wide range of viruses. Although an increasing number of bat-associated, potentially human pathogenic viruses were discovered in the past, the full picture of the bat viromes is not explored yet. In this study, the virome composition of Miniopterus phillipsi bats (formerly known as Miniopterus fuliginosus bats in Sri Lanka) inhabiting the Wavul Galge cave, Sri Lanka, was analyzed. To assess different possible excretion routes, oral swabs, feces and urine were collected and analyzed individually by using metagenomic NGS. The data obtained was further evaluated by using phylogenetic reconstructions, whereby a special focus was set on RNA viruses that are typically associated with bats. Two different alphacoronavirus strains were detected in feces and urine samples. Furthermore, a paramyxovirus was detected in urine samples. Sequences related to Picornaviridae, Iflaviridae, unclassified Riboviria and Astroviridae were identified in feces samples and further sequences related to Astroviridae in urine samples. No viruses were detected in oral swab samples. The comparative virome analysis in this study revealed a diversity in the virome composition between the collected sample types which also represent different potential shedding routes for the detected viruses. At the same time, several novel viruses represent first reports of these pathogens from bats in Sri Lanka. The detection of two different coronaviruses in the samples indicates the potential general persistence of this virus species in M. phillipsi bats. Based on phylogenetics, the identified viruses are closely related to bat-associated viruses with comparably low estimation of human pathogenic potential. In further studies, the seasonal variation of the virome will be analyzed to identify possible shedding patterns for particular viruses.


Assuntos
Quirópteros , Coronavirus , Animais , Humanos , Filogenia , Viroma , Sri Lanka , Coronavirus/genética
13.
J Virol ; 85(1): 324-33, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20980514

RESUMO

The 200-kDa L protein of arenaviruses plays a central role in viral genome replication and transcription. This study aimed at providing evidence for the domain structure of L protein by combining bioinformatics with a stepwise mutagenesis approach using the Lassa virus minireplicon system. Potential interdomain linkers were predicted using various algorithms. The prediction was challenged by insertion of flexible sequences into the predicted linkers. Insertion of 5 or 10 amino acid residues was tolerated at seven sites (S407, G446, G467, G774, G939, S1952, and V2074 in Lassa virus AV). At two of these sites, G467 and G939, L protein could be split into an N-terminal and a C-terminal part, which were able to trans-complement each other and reconstitute a functional complex upon coexpression. Coimmunoprecipitation studies revealed physical interaction between the N- and C-terminal domains, irrespective of whether L protein was split at G467 or G939. In confocal immunofluorescence microscopy, the N-terminal domains showed a dot-like, sometimes perinuclear, cytoplasmic distribution similar to that of full-length L protein, while the C-terminal domains were homogenously distributed in cytoplasm. The latter were redistributed into the dot-like structures upon coexpression with the corresponding N-terminal domain. In conclusion, this study demonstrates two interdomain linkers in Lassa virus L protein, at G467 and G939, suggesting that L protein is composed of at least three structural domains spanning residues 1 to 467, 467 to 939, and 939 to 2220. The first domain seems to mediate accumulation of L protein into cytoplasmic dot-like structures.


Assuntos
Vírus Lassa/química , Proteínas Virais/química , Algoritmos , Animais , Linhagem Celular , Biologia Computacional , Cricetinae , Imunofluorescência , Imunoprecipitação , Vírus Lassa/genética , Vírus Lassa/metabolismo , Microscopia Confocal , Mutagênese , Estrutura Terciária de Proteína/genética , Replicon , Proteínas Virais/genética , Proteínas Virais/metabolismo
14.
Trop Med Int Health ; 17(8): 1001-4, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22594713

RESUMO

OBJECTIVES: To estimate the burden of Lassa fever in northern and central Edo, a state in south Nigeria where Lassa fever has been reported. METHODS: Blood samples were obtained from 60 patients hospitalised at the Irrua Specialist Teaching Hospital (ISTH), Irrua, with a clinical suspicion of Lassa fever and from 451 febrile outpatients seen at the ISTH and hospitals in Ekpoma, Iruekpen, Uromi, Auchi and Igarra. All samples were tested retrospectively by Lassa virus-specific RT-PCR. Outpatients were additionally screened for Lassa virus-specific antibodies by indirect immunofluorescent antibody assay. RESULTS: Lassa virus was detected in 25 of 60 (42%) patients with a clinical suspicion of Lassa fever. The disease affected persons of all age groups and with various occupations, including healthcare workers. The clinical picture was dominated by gastrointestinal symptoms. The case fatality rate was 29%. Lassa virus was detected in 2 of 451 (0.44%) febrile outpatients, and 8 (1.8%) were positive for Lassa virus-specific IgG. CONCLUSIONS: Lassa fever contributes to hospital mortality in Edo State. The low prevalence of the disease among outpatients and the low seroprevalence may indicate that the population-level incidence is not high. Surveillance for Lassa fever should focus on the hospitalised patient.


Assuntos
Hospitais de Ensino/estatística & dados numéricos , Febre Lassa/epidemiologia , Adolescente , Adulto , Anticorpos Antivirais , Criança , Pré-Escolar , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Incidência , Lactente , Febre Lassa/genética , Febre Lassa/mortalidade , Masculino , Pessoa de Meia-Idade , Nigéria/epidemiologia , Prevalência , RNA Viral/análise , Estudos Retrospectivos , Fatores Socioeconômicos , Adulto Jovem
15.
Viruses ; 14(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36146676

RESUMO

Highly pathogenic Arenaviruses, like the Lassa Virus (LASV), pose a serious public health threat in affected countries. Research and development of vaccines and therapeutics are urgently needed but hampered by the necessity to handle these pathogens under biosafety level 4 conditions. These containment restrictions make large-scale screens of antiviral compounds difficult. Therefore, the Mopeia virus (MOPV), closely related to LASV, is often used as an apathogenic surrogate virus. We established for the first time trisegmented MOPVs (r3MOPV) with duplicated S segments, in which one of the viral genes was replaced by the reporter genes ZsGreen (ZsG) or Renilla Luciferase (Rluc), respectively. In vitro characterization of the two trisegmented viruses (r3MOPV ZsG/Rluc and r3MOPV Rluc/ZsG), showed comparable growth behavior to the wild type virus and the expression of the reporter genes correlated well with viral titer. We used the reporter viruses in a proof-of-principle in vitro study to evaluate the antiviral activity of two well characterized drugs. IC50 values obtained by Rluc measurement were similar to those obtained by virus titers. ZsG expression was also suitable to evaluate antiviral effects. The trisegmented MOPVs described here provide a versatile and valuable basis for rapid high throughput screening of broadly reactive antiviral compounds against arenaviruses under BSL-2 conditions.


Assuntos
Arenaviridae , Orthopoxvirus , Antivirais/farmacologia , Arenaviridae/genética , Genes Reporter , Vírus Lassa , Luciferases de Renilla/genética , Orthopoxvirus/genética , Pesquisa
16.
Pathogens ; 11(4)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35456109

RESUMO

Bats are known as typical reservoirs for a number of viruses, including viruses of the family Paramyxoviridae. Representatives of the subfamily Orthoparamyxovirinae are distributed worldwide and can cause mild to fatal diseases when infecting humans. The research on Paramyxoviruses (PMVs) from different bat hosts all over the world aims to understand the diversity, evolution and distribution of these viruses and to assess their zoonotic potential. A high number of yet unclassified PMVs from bats are recorded. In our study, we investigated bat species from the families Rhinolophidae, Hipposiderae, Pteropodidae and Miniopteridae that are roosting sympatrically in the Wavul Galge cave (Koslanda, Sri Lanka). The sampling at three time points (March and July 2018; January 2019) and screening for PMVs with a generic PCR show the presence of different novel PMVs in 10 urine samples collected from Miniopterus fuliginosus. Sequence analysis revealed a high similarity of the novel strains among each other and to other unclassified PMVs collected from Miniopterus bats. In this study, we present the first detection of PMVs in Sri Lanka and the presence of PMVs in the bat species M. fuliginosus for the first time.

17.
Animals (Basel) ; 12(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35804573

RESUMO

This is the first report on the molecular identification and phylogeny of the Rousettus leschenaultii Desmarest, 1810, Rhinolophus rouxii Temminck, 1835, Hipposideros speoris Schneider, 1800, Hipposideros lankadiva Kelaart, 1850, and Miniopterus fuliginosus Kuhl, 1817, bat species in Sri Lanka, inferred from analyses by mitochondrially encoded cytochrome b gene sequences. Recent research has indicated that bats show enormous cryptic genetic diversity. Moreover, even within the same species, the acoustic properties of echolocation calls and morphological features such as fur color could vary in different populations. Therefore, we have used molecular taxonomy for the accurate identification of five bat species recorded in one of the largest cave populations in Sri Lanka. The bats were caught using a hand net, and saliva samples were collected non-invasively from each bat by using a sterile oral swab. Nucleic acids were extracted from the oral swab samples, and mitochondrial DNA was amplified by using primers targeting the mitochondrially encoded cytochrome b gene. This study reports the first molecular evidence for the identification of five bat species in Sri Lanka. Our findings will contribute to future conservation and systematic studies of bats in Sri Lanka. This study will also provide the basis for a genetic database of Sri Lankan bats which will contribute significantly to the investigation of potentially zoonotic bat viruses.

18.
Viruses ; 14(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35215931

RESUMO

Coronaviruses (CoV) are divided into the genera α-CoVs, ß-CoVs, γ-CoVs and δ-CoVs. Of these, α-CoVs and ß-CoVs are solely capable of causing infections in humans, resulting in mild to severe respiratory symptoms. Bats have been identified as natural reservoir hosts for CoVs belonging to these two genera. Consequently, research on bat populations, CoV prevalence in bats and genetic characterization of bat CoVs is of special interest to investigate the potential transmission risks. We present the genome sequence of a novel α-CoV strain detected in rectal swab samples of Miniopterus fuliginosus bats from a colony in the Wavul Galge cave (Koslanda, Sri Lanka). The novel strain is highly similar to Miniopterus bat coronavirus 1, an α-CoV located in the subgenus of Minunacoviruses. Phylogenetic reconstruction revealed a high identity of the novel strain to other α-CoVs derived from Miniopterus bats, while human-pathogenic α-CoV strains like HCoV-229E and HCoV-NL63 were more distantly related. Comparison with selected bat-related and human-pathogenic strains of the ß-CoV genus showed low identities of ~40%. Analyses of the different genes on nucleotide and amino acid level revealed that the non-structural ORF1a/1b are more conserved among α-CoVs and ß-CoVs, while there are higher variations in the structural proteins known to be important for host specificity. The novel strain was named batCoV/MinFul/2018/SriLanka and had a prevalence of 50% (66/130) in rectal swab samples and 58% (61/104) in feces samples that were collected from Miniopterus bats in Wavul Galge cave. Based on the differences between strain batCoV/MinFul/2018/SriLanka and human-pathogenic α-CoVs and ß-CoVs, we conclude that there is a rather low transmission risk to humans. Further studies in the Wavul Galge cave and at other locations in Sri Lanka will give more detailed information about the prevalence of this virus.


Assuntos
Alphacoronavirus/genética , Alphacoronavirus/isolamento & purificação , Quirópteros/virologia , Infecções por Coronavirus/veterinária , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Genoma Viral , Alphacoronavirus/classificação , Animais , Cavernas/virologia , Infecções por Coronavirus/virologia , Evolução Molecular , Feminino , Masculino , Filogenia , Análise de Sequência de DNA , Sri Lanka
19.
J Clin Microbiol ; 49(3): 1157-61, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21191050

RESUMO

Recent Lassa virus strains from Nigeria were completely or partially sequenced. Phylogenetic analysis revealed the predominance of lineage II and III strains, the existence of a previously undescribed (sub)lineage in Nigeria, and the directional spread of virus in the southern part of the country. The Bayesian analysis also provided estimates for divergence times within the Lassa virus clade.


Assuntos
Febre Lassa/epidemiologia , Febre Lassa/virologia , Vírus Lassa/classificação , Vírus Lassa/isolamento & purificação , Análise por Conglomerados , Humanos , Vírus Lassa/genética , Epidemiologia Molecular , Dados de Sequência Molecular , Nigéria/epidemiologia , Filogenia , Polimorfismo Genético , RNA Viral/genética , Análise de Sequência de DNA
20.
Vaccines (Basel) ; 9(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203592

RESUMO

Bats are known to be potential reservoirs of numerous human-pathogenic viruses. They have been identified as natural hosts for coronaviruses, causing Severe Acute Respiratory Syndrome (SARS) in humans. Since the emergence of SARS-CoV-2 in 2019 interest in the prevalence of coronaviruses in bats was newly raised. In this study we investigated different bat species living in a sympatric colony in the Wavul Galge cave (Koslanda, Sri Lanka). In three field sessions (in 2018 and 2019), 395 bats were captured (Miniopterus, Rousettus, Hipposideros and Rhinolophus spp.) and either rectal swabs or fecal samples were collected. From these overall 396 rectal swab and fecal samples, the screening for coronaviruses with nested PCR resulted in 33 positive samples, 31 of which originated from Miniopterus fuliginosus and two from Rousettus leschenaultii. Sanger sequencing and phylogenetic analysis of the obtained 384-nt fragment of the RNA-dependent RNA polymerase revealed that the examined M. fuliginosus bats excrete alphacoronaviruses and the examined R. leschenaultii bats excrete betacoronaviruses. Despite the sympatric roosting habitat, the coronaviruses showed host specificity and seemed to be limited to one species. Our results represent an important basis to better understand the prevalence of coronaviruses in Sri Lankan bats and may provide a basis for pursuing studies on particular bat species of interest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA