Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(7): 1902-1916.e13, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30550788

RESUMO

Nuclear architecture has never been carefully examined during early mammalian development at the stages leading to establishment of the embryonic and extra-embryonic lineages. Heterogeneous activity of the methyltransferase CARM1 during these stages results in differential methylation of histone H3R26 to modulate establishment of these two lineages. Here we show that CARM1 accumulates in nuclear granules at the 2- to 4-cell stage transition in the mouse embryo, with the majority corresponding to paraspeckles. The paraspeckle component Neat1 and its partner p54nrb are required for CARM1's association with paraspeckles and for H3R26 methylation. Conversely, CARM1 also influences paraspeckle organization. Depletion of Neat1 or p54nrb results in arrest at the 16- to 32-cell stage, with elevated expression of transcription factor Cdx2, promoting differentiation into the extra-embryonic lineage. This developmental arrest occurs at an earlier stage than following CARM1 depletion, indicating that paraspeckles act upstream of CARM1 but also have additional earlier roles in fate choice.


Assuntos
Blastocisto/metabolismo , Diferenciação Celular , Linhagem da Célula , Desenvolvimento Embrionário , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Blastocisto/citologia , Pontos de Checagem do Ciclo Celular , Camundongos , Proteínas Associadas à Matriz Nuclear/genética , Proteína-Arginina N-Metiltransferases/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética
2.
Cell ; 166(4): 950-962, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27518565

RESUMO

Posttranslational modifications (PTMs) of tubulin specify microtubules for specialized cellular functions and comprise what is termed a "tubulin code." PTMs of histones comprise an analogous "histone code," although the "readers, writers, and erasers" of the cytoskeleton and epigenome have heretofore been distinct. We show that methylation is a PTM of dynamic microtubules and that the histone methyltransferase SET-domain-containing 2 (SETD2), which is responsible for H3 lysine 36 trimethylation (H3K36me3) of histones, also methylates α-tubulin at lysine 40, the same lysine that is marked by acetylation on microtubules. Methylation of microtubules occurs during mitosis and cytokinesis and can be ablated by SETD2 deletion, which causes mitotic spindle and cytokinesis defects, micronuclei, and polyploidy. These data now identify SETD2 as a dual-function methyltransferase for both chromatin and the cytoskeleton and show a requirement for methylation in maintenance of genomic stability and the integrity of both the tubulin and histone codes.


Assuntos
Montagem e Desmontagem da Cromatina , Citoesqueleto/metabolismo , Código das Histonas , Histona-Lisina N-Metiltransferase/metabolismo , Linhagem Celular Tumoral , Citocinese , Instabilidade Genômica , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Microtúbulos/metabolismo , Mitose , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo
3.
Nature ; 629(8014): 1174-1181, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720073

RESUMO

Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.


Assuntos
Fosfotirosina , Proteínas Tirosina Quinases , Especificidade por Substrato , Tirosina , Animais , Humanos , Motivos de Aminoácidos , Evolução Molecular , Espectrometria de Massas , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteoma/química , Proteoma/metabolismo , Proteômica , Transdução de Sinais , Domínios de Homologia de src , Tirosina/metabolismo , Tirosina/química
4.
Mol Cell ; 81(4): 784-800.e8, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33412112

RESUMO

DNA replication forks use multiple mechanisms to deal with replication stress, but how the choice of mechanisms is made is still poorly understood. Here, we show that CARM1 associates with replication forks and reduces fork speed independently of its methyltransferase activity. The speeding of replication forks in CARM1-deficient cells requires RECQ1, which resolves reversed forks, and RAD18, which promotes translesion synthesis. Loss of CARM1 reduces fork reversal and increases single-stranded DNA (ssDNA) gaps but allows cells to tolerate higher replication stress. Mechanistically, CARM1 interacts with PARP1 and promotes PARylation at replication forks. In vitro, CARM1 stimulates PARP1 activity by enhancing its DNA binding and acts jointly with HPF1 to activate PARP1. Thus, by stimulating PARP1, CARM1 slows replication forks and promotes the use of fork reversal in the stress response, revealing that CARM1 and PARP1 function as a regulatory module at forks to control fork speed and the choice of stress response mechanisms.


Assuntos
Quebras de DNA de Cadeia Simples , Replicação do DNA , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Proteína-Arginina N-Metiltransferases/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo
5.
Genes Dev ; 33(23-24): 1702-1717, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31699778

RESUMO

The establishment of polyubiquitin conjugates with distinct linkages play important roles in the DNA damage response. Much remains unknown about the regulation of linkage-specific ubiquitin signaling at sites of DNA damage. Here we reveal that Cezanne (also known as Otud7B) deubiquitinating enzyme promotes the recruitment of Rap80/BRCA1-A complex by binding to Lys63-polyubiquitin and targeting Lys11-polyubiquitin. Using a ubiquitin binding domain protein array screen, we identify that the UBA domains of Cezanne and Cezanne2 (also known as Otud7A) selectively bind to Lys63-linked polyubiquitin. Increased Lys11-linkage ubiquitination due to lack of Cezanne DUB activity compromises the recruitment of Rap80/BRCA1-A. Cezanne2 interacts with Cezanne, facilitating Cezanne in the recruitment of Rap80/BRCA1-A, Rad18, and 53BP1, in cellular resistance to ionizing radiation and DNA repair. Our work presents a model that Cezanne serves as a "reader" of the Lys63-linkage polyubiquitin at DNA damage sites and an "eraser" of the Lys11-linkage ubiquitination, indicating a crosstalk between linkage-specific ubiquitination at DNA damage sites.


Assuntos
Dano ao DNA , Reparo do DNA/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Poliubiquitina/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos da radiação , Proteínas de Ligação a DNA , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Chaperonas de Histonas , Humanos , Lisina/metabolismo , Proteínas Nucleares , Análise Serial de Proteínas , Ligação Proteica , Domínios Proteicos , Transporte Proteico/genética , Radiação Ionizante
6.
J Biol Chem ; 299(9): 105124, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536629

RESUMO

Coactivator-associated arginine methyltransferase 1 (CARM1) is an arginine methyltransferase that posttranslationally modifies proteins that regulate multiple levels of RNA production and processing. Its substrates include histones, transcription factors, coregulators of transcription, and splicing factors. CARM1 is overexpressed in many different cancer types, and often promotes transcription factor programs that are co-opted as drivers of the transformed cell state, a process known as transcription factor addiction. Targeting these oncogenic transcription factor pathways is difficult but could be addressed by removing the activity of the key coactivators on which they rely. CARM1 is ubiquitously expressed, and its KO is less detrimental in embryonic development than deletion of the arginine methyltransferases protein arginine methyltransferase 1 and protein arginine methyltransferase 5, suggesting that therapeutic targeting of CARM1 may be well tolerated. Here, we will summarize the normal in vivo functions of CARM1 that have been gleaned from mouse studies, expand on the transcriptional pathways that are regulated by CARM1, and finally highlight recent studies that have identified oncogenic properties of CARM1 in different biological settings. This review is meant to kindle an interest in the development of human drug therapies targeting CARM1, as there are currently no CARM1 inhibitors available for use in clinical trials.


Assuntos
Neoplasias , Proteína-Arginina N-Metiltransferases , Animais , Humanos , Camundongos , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fatores de Transcrição/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
7.
J Biol Chem ; 299(2): 102862, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36596360

RESUMO

The N-terminal half of PHF2 harbors both a plant homeodomain (PHD) and a Jumonji domain. The PHD recognizes both histone H3 trimethylated at lysine 4 and methylated nonhistone proteins including vaccinia-related kinase 1 (VRK1). The Jumonji domain erases the repressive dimethylation mark from histone H3 lysine 9 (H3K9me2) at select promoters. The N-terminal amino acid sequences of H3 (AR2TK4) and VRK1 (PR2VK4) bear an arginine at position 2 and lysine at position 4. Here, we show that the PHF2 N-terminal half binds to H3 and VRK1 peptides containing K4me3, with dissociation constants (KD values) of 160 nM and 42 nM, respectively, which are 4 × and 21 × lower (and higher affinities) than for the isolated PHD domain of PHF2. X-ray crystallography revealed that the K4me3-containing peptide is positioned within the PHD and Jumonji interface, with the positively charged R2 residue engaging acidic residues of the PHD and Jumonji domains and with the K4me3 moiety encircled by aromatic residues from both domains. We suggest that the micromolar binding affinities commonly observed for isolated methyl-lysine reader domains could be improved via additional functional interactions within the same polypeptide or its binding partners.


Assuntos
Histonas , Proteínas de Homeodomínio , Lisina , Histonas/química , Lisina/química , Metilação , Peptídeos/química , Ligação Proteica , Domínios Proteicos , Proteínas de Homeodomínio/química
8.
Biochem J ; 480(22): 1805-1816, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37905668

RESUMO

Staphylococcal nuclease Tudor domain containing 1 (SND1) protein is an oncogene that 'reads' methylarginine marks through its Tudor domain. Specifically, it recognizes methylation marks deposited by protein arginine methyltransferase 5 (PRMT5), which is also known to promote tumorigenesis. Although SND1 can drive hepatocellular carcinoma (HCC), it is unclear whether the SND1 Tudor domain is needed to promote HCC. We sought to identify the biological role of the SND1 Tudor domain in normal and tumorigenic settings by developing two genetically engineered SND1 mouse models, an Snd1 knockout (Snd1 KO) and an Snd1 Tudor domain-mutated (Snd1 KI) mouse, whose mutant SND1 can no longer recognize PRMT5-catalyzed methylarginine marks. Quantitative PCR analysis of normal, KO, and KI liver samples revealed a role for the SND1 Tudor domain in regulating the expression of genes encoding major acute phase proteins, which could provide mechanistic insight into SND1 function in a tumor setting. Prior studies indicated that ectopic overexpression of SND1 in the mouse liver dramatically accelerates the development of diethylnitrosamine (DEN)-induced HCC. Thus, we tested the combined effects of DEN and SND1 loss or mutation on the development of HCC. We found that both Snd1 KO and Snd1 KI mice were partially protected against malignant tumor development following exposure to DEN. These results support the development of small molecule inhibitors that target the SND1 Tudor domain or the use of upstream PRMT5 inhibitors, as novel treatments for HCC.


Assuntos
Carcinoma Hepatocelular , Endonucleases , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Endonucleases/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição , Predisposição Genética para Doença
9.
Nucleic Acids Res ; 50(12): 6903-6918, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35694846

RESUMO

Gliomas are one of the most common and lethal brain tumors among adults. One process that contributes to glioma progression and recurrence is the epithelial to mesenchymal transition (EMT). EMT is regulated by a set of defined transcription factors which tightly regulate this process, among them is the basic helix-loop-helix family member, TWIST1. Here we show that TWIST1 is methylated on lysine-33 at chromatin by SETD6, a methyltransferase with expression levels correlating with poor survival in glioma patients. RNA-seq analysis in U251 glioma cells suggested that both SETD6 and TWIST1 regulate cell adhesion and migration processes. We further show that TWIST1 methylation attenuates the expression of the long-non-coding RNA, LINC-PINT, thereby promoting EMT in glioma. Mechanistically, TWIST1 methylation represses the transcription of LINC-PINT by increasing the occupancy of EZH2 and the catalysis of the repressive H3K27me3 mark at the LINC-PINT locus. Under un-methylated conditions, TWIST1 dissociates from the LINC-PINT locus, allowing the expression of LINC-PINT which leads to increased cell adhesion and decreased cell migration. Together, our findings unravel a new mechanistic dimension for selective expression of LINC-PINT mediated by TWIST1 methylation.


Assuntos
Glioma , Proteínas Metiltransferases , RNA Longo não Codificante , Proteína 1 Relacionada a Twist , Humanos , Transição Epitelial-Mesenquimal , Proteínas Nucleares/genética , Proteínas Metiltransferases/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Glioma/metabolismo , Glioma/patologia , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral
10.
J Biol Chem ; 298(3): 101588, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033534

RESUMO

The methyl-lysine readers plant homeodomain finger protein 20 (PHF20) and its homolog PHF20-like protein 1 (PHF20L1) are known components of the nonspecific lethal (NSL) complex that regulates gene expression through its histone acetyltransferase activity. In the current model, both PHF homologs coexist in the same NSL complex, although this was not formally tested; nor have the functions of PHF20 and PHF20L1 regarding NSL complex integrity and transcriptional regulation been investigated. Here, we perform an in-depth biochemical and functional characterization of PHF20 and PHF20L1 in the context of the NSL complex. Using mass spectrometry, genome-wide chromatin analysis, and protein-domain mapping, we identify the existence of two distinct NSL complexes that exclusively contain either PHF20 or PHF20L1. We show that the C-terminal domains of PHF20 and PHF20L1 are essential for complex formation with NSL, and the Tudor 2 domains are required for chromatin binding. The genome-wide chromatin landscape of PHF20-PHF20L1 shows that these proteins bind mostly to the same genomic regions, at promoters of highly expressed/housekeeping genes. Yet, deletion of PHF20 and PHF20L1 does not abrogate gene expression or impact the recruitment of the NSL complex to those target gene promoters, suggesting the existence of an alternative mechanism that compensates for the transcription of genes whose sustained expression is important for critical cellular functions. This work shifts the current paradigm and lays the foundation for studies on the differential roles of PHF20 and PHF20L1 in regulating NSL complex activity in physiological and diseases states.


Assuntos
Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA , Proteínas de Homeodomínio , Lisina , Fatores de Transcrição , Acetilação , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Lisina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Biochem Soc Trans ; 51(2): 725-734, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37013969

RESUMO

Arginine methylation is a ubiquitous and relatively stable post-translational modification (PTM) that occurs in three types: monomethylarginine (MMA), asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). Methylarginine marks are catalyzed by members of the protein arginine methyltransferases (PRMTs) family of enzymes. Substrates for arginine methylation are found in most cellular compartments, with RNA-binding proteins forming the majority of PRMT targets. Arginine methylation often occurs in intrinsically disordered regions of proteins, which impacts biological processes like protein-protein interactions and phase separation, to modulate gene transcription, mRNA splicing and signal transduction. With regards to protein-protein interactions, the major 'readers' of methylarginine marks are Tudor domain-containing proteins, although additional domain types and unique protein folds have also recently been identified as methylarginine readers. Here, we will assess the current 'state-of-the-art' in the arginine methylation reader field. We will focus on the biological functions of the Tudor domain-containing methylarginine readers and address other domains and complexes that sense methylarginine marks.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA , Arginina/química , Arginina/genética , Arginina/metabolismo , Metilação , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo
12.
Nat Immunol ; 12(1): 29-36, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21131967

RESUMO

Signaling via the methylation of lysine residues in proteins has been linked to diverse biological and disease processes, yet the catalytic activity and substrate specificity of many human protein lysine methyltransferases (PKMTs) are unknown. We screened over 40 candidate PKMTs and identified SETD6 as a methyltransferase that monomethylated chromatin-associated transcription factor NF-κB subunit RelA at Lys310 (RelAK310me1). SETD6-mediated methylation rendered RelA inert and attenuated RelA-driven transcriptional programs, including inflammatory responses in primary immune cells. RelAK310me1 was recognized by the ankryin repeat of the histone methyltransferase GLP, which under basal conditions promoted a repressed chromatin state at RelA target genes through GLP-mediated methylation of histone H3 Lys9 (H3K9). NF-κB-activation-linked phosphorylation of RelA at Ser311 by protein kinase C-ζ (PKC-ζ) blocked the binding of GLP to RelAK310me1 and relieved repression of the target gene. Our findings establish a previously uncharacterized mechanism by which chromatin signaling regulates inflammation programs.


Assuntos
Artrite Reumatoide/imunologia , NF-kappa B/metabolismo , Proteínas Metiltransferases/metabolismo , Fator de Transcrição RelA/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Montagem e Desmontagem da Cromatina/genética , Metilação de DNA , Células HEK293 , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Inflamação , Lisina/metabolismo , NF-kappa B/genética , NF-kappa B/imunologia , Ligação Proteica/genética , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/imunologia , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia
13.
Methods ; 200: 80-86, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34107353

RESUMO

Arginine methylation is a prevalent posttranslational modification which is deposited by a family of protein arginine methyltransferases (PRMTs), and is found in three different forms in mammalian cells: monomethylarginine (MMA), asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). Pan-methylarginine antibodies are critical for identifying proteins that are methylated on arginine residues, and are also used for evaluating signaling pathways that modulate this methyltransferase activity. Although good pan-MMA, -ADMA and -SDMA antibodies have been developed over the years, there is still room for improvement. Here we use a novel antigen approach, which involves the separation of short methylated motifs with inert polyethylene glycol (PEG) linkers, to generate a set of pan antibodies to the full range of methylarginine marks. Using these antibodies, we observed substrate scavenging by PRMT1, when PRMT5 activity is blocked. Specifically, we find that the splicing factor SmD1 displays increased ADMA levels upon PRMT5 inhibitor treatment. Furthermore, when the catalysis of both SDMA and ADMA is blocked with small molecule inhibitors, we demonstrate that SmD1 and SMN no longer interact. This could partially explain the synergistic effect of PRMT5 and type I PRMT inhibition on RNA splicing and cancer cell growth.


Assuntos
Polietilenoglicóis , Proteína-Arginina N-Metiltransferases , Animais , Anticorpos/genética , Arginina/metabolismo , Mamíferos/metabolismo , Metilação , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/metabolismo
14.
Mol Cell ; 58(5): 863-9, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25959398

RESUMO

ATP-dependent chromatin remodeling complexes such as INO80 have been implicated in checkpoint regulation in response to DNA damage. However, how chromatin remodeling complexes regulate DNA damage checkpoints remain unclear. Here, we identified a mechanism of regulating checkpoint effector kinase Rad53 through a direct interaction with the INO80 chromatin remodeling complex. Rad53 is a key checkpoint kinase downstream of Mec1. Mec1/Tel1 phosphorylates the Ies4 subunit of the INO80 complex in response to DNA damage. We find that the phosphorylated Ies4 binds to the N-terminal FHA domain of Rad53. In vitro, INO80 can activate Rad53 kinase activity in an Ies4-phosphorylation-dependent manner in the absence of known activators such as Rad9. In vivo, Ies4 and Rad9 function synergistically to activate Rad53. These findings establish a direct connection between ATP-dependent chromatin remodeling complexes and checkpoint regulation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Ativação Enzimática , Dados de Sequência Molecular , Fosforilação , Proteólise
15.
Nucleic Acids Res ; 49(20): 11629-11642, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34086966

RESUMO

MettL3-MettL14 methyltransferase complex has been studied widely for its role in RNA adenine methylation. This complex is also recruited to UV- and X-ray exposed DNA damaged sites, and its methyltransfer activity is required for subsequent DNA repair, though in theory this could result from RNA methylation of short transcripts made at the site of damage. We report here that MettL3-MettL14 is active in vitro on double-stranded DNA containing a cyclopyrimidine dimer - a major lesion of UV radiation-induced products - or an abasic site or mismatches. Furthermore, N6-methyladenine (N6mA) decreases misincorporation of 8-oxo-guanine (8-oxoG) opposite to N6mA by repair DNA polymerases. When 8-oxoG is nevertheless incorporated opposite N6mA, the methylation inhibits N6mA excision from the template (correct) strand by the adenine DNA glycosylase (MYH), implying that the methylation decreases inappropriate misrepair. Finally, we observed that the N6mA reader domain of YTHDC1, which is also recruited to sites of DNA damage, binds N6mA that is located across from a single-base gap between two canonical DNA helices. This YTHDC1 complex with a gapped duplex is structurally similar to DNA complexes with FEN1 and GEN1 - two members of the nuclease family that act in nucleotide excision repair, mismatch repair and homologous recombination, and which incise distinct non-B DNA structures. Together, the parts of our study provide a plausible mechanism for N6mA writer and reader proteins acting directly on lesion-containing DNA, and suggest in vivo experiments to test the mechanisms involving methylation of adenine.


Assuntos
Adenina/análogos & derivados , DNA/metabolismo , Metiltransferases/metabolismo , Mutação , Adenina/metabolismo , Sítios de Ligação , DNA/química , DNA/genética , Metilação de DNA , Humanos , Metiltransferases/química , Ligação Proteica
16.
Genes Dev ; 29(6): 630-45, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25792598

RESUMO

In many cells, mRNAs containing inverted repeated Alu elements (IRAlus) in their 3' untranslated regions (UTRs) are inefficiently exported to the cytoplasm. Such nuclear retention correlates with paraspeckle-associated protein complexes containing p54(nrb). However, nuclear retention of mRNAs containing IRAlus is variable, and how regulation of retention and export is achieved is poorly understood. Here we show one mechanism of such regulation via the arginine methyltransferase CARM1 (coactivator-associated arginine methyltransferase 1). We demonstrate that disruption of CARM1 enhances the nuclear retention of mRNAs containing IRAlus. CARM1 regulates this nuclear retention pathway at two levels: CARM1 methylates the coiled-coil domain of p54(nrb), resulting in reduced binding of p54(nrb) to mRNAs containing IRAlus, and also acts as a transcription regulator to suppress NEAT1 transcription, leading to reduced paraspeckle formation. These actions of CARM1 work together synergistically to regulate the export of transcripts containing IRAlus from paraspeckles under certain cellular stresses, such as poly(I:C) treatment. This work demonstrates how a post-translational modification of an RNA-binding protein affects protein-RNA interaction and also uncovers a mechanism of transcriptional regulation of the long noncoding RNA NEAT1.


Assuntos
Núcleo Celular/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Elementos Alu/genética , Animais , Linhagem Celular , Metilação de DNA , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Sequências Repetidas Invertidas/genética , Camundongos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico
17.
J Virol ; 95(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33536174

RESUMO

Filoviridae family members Ebola (EBOV) and Marburg (MARV) viruses and Arenaviridae family member Lassa virus (LASV) are emerging pathogens that can cause hemorrhagic fever and high rates of mortality in humans. A better understanding of the interplay between these viruses and the host will inform about the biology of these pathogens, and may lead to the identification of new targets for therapeutic development. Notably, expression of the filovirus VP40 and LASV Z matrix proteins alone drives assembly and egress of virus-like particles (VLPs). The conserved PPxY Late (L) domain motifs in the filovirus VP40 and LASV Z proteins play a key role in the budding process by mediating interactions with select host WW-domain containing proteins that then regulate virus egress and spread. To identify the full complement of host WW-domain interactors, we utilized WT and PPxY mutant peptides from EBOV and MARV VP40 and LASV Z proteins to screen an array of GST-WW-domain fusion proteins. We identified WW domain-containing oxidoreductase (WWOX) as a novel PPxY-dependent interactor, and we went on to show that full-length WWOX physically interacts with eVP40, mVP40 and LASV Z to negatively regulate egress of VLPs and of a live VSV/Ebola recombinant virus (M40). Interestingly, WWOX is a versatile host protein that regulates multiple signaling pathways and cellular processes via modular interactions between its WW-domains and PPxY motifs of select interacting partners, including host angiomotin (AMOT). Notably, we demonstrated recently that expression of endogenous AMOT not only positively regulates egress of VLPs, but also promotes egress and spread of live EBOV and MARV. Toward the mechanism of action, we show that the competitive and modular interplay among WWOX-AMOT-VP40/Z regulates VLP and M40 virus egress. Thus, WWOX is the newest member of an emerging group of host WW-domain interactors (e.g. BAG3; YAP/TAZ) that negatively regulate viral egress. These findings further highlight the complex interplay of virus-host PPxY/WW-domain interactions and their potential impact on the biology of both the virus and the host during infection.Author Summary Filoviruses (Ebola [EBOV] and Marburg [MARV]) and arenavirus (Lassa virus; LASV) are zoonotic, emerging pathogens that cause outbreaks of severe hemorrhagic fever in humans. A fundamental understanding of the virus-host interface is critical for understanding the biology of these viruses and for developing future strategies for therapeutic intervention. Here, we identified host WW-domain containing protein WWOX as a novel interactor with VP40 and Z, and showed that WWOX inhibited budding of VP40/Z virus-like particles (VLPs) and live virus in a PPxY/WW-domain dependent manner. Our findings are important to the field as they expand the repertoire of host interactors found to regulate PPxY-mediated budding of RNA viruses, and further highlight the competitive interplay and modular virus-host interactions that impact both the virus lifecycle and the host cell.

18.
PLoS Pathog ; 16(1): e1008231, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31905227

RESUMO

Ebola (EBOV) and Marburg (MARV) are members of the Filoviridae family, which continue to emerge and cause sporadic outbreaks of hemorrhagic fever with high mortality rates. Filoviruses utilize their VP40 matrix protein to drive virion assembly and budding, in part, by recruitment of specific WW-domain-bearing host proteins via its conserved PPxY Late (L) domain motif. Here, we screened an array of 115 mammalian, bacterially expressed and purified WW-domains using a PPxY-containing peptide from MARV VP40 (mVP40) to identify novel host interactors. Using this unbiased approach, we identified Yes Associated Protein (YAP) and Transcriptional co-Activator with PDZ-binding motif (TAZ) as novel mVP40 PPxY interactors. YAP and TAZ function as downstream transcriptional effectors of the Hippo signaling pathway that regulates cell proliferation, migration and apoptosis. We demonstrate that ectopic expression of YAP or TAZ along with mVP40 leads to significant inhibition of budding of mVP40 VLPs in a WW-domain/PPxY dependent manner. Moreover, YAP colocalized with mVP40 in the cytoplasm, and inhibition of mVP40 VLP budding was more pronounced when YAP was localized predominantly in the cytoplasm rather than in the nucleus. A key regulator of YAP nuclear/cytoplasmic localization and function is angiomotin (Amot); a multi-PPxY containing protein that strongly interacts with YAP WW-domains. Interestingly, we found that expression of PPxY-containing Amot rescued mVP40 VLP egress from either YAP- or TAZ-mediated inhibition in a PPxY-dependent manner. Importantly, using a stable Amot-knockdown cell line, we found that expression of Amot was critical for efficient egress of mVP40 VLPs as well as egress and spread of authentic MARV in infected cell cultures. In sum, we identified novel negative (YAP/TAZ) and positive (Amot) regulators of MARV VP40-mediated egress, that likely function in part, via competition between host and viral PPxY motifs binding to modular host WW-domains. These findings not only impact our mechanistic understanding of virus budding and spread, but also may impact the development of new antiviral strategies.


Assuntos
Filoviridae/fisiologia , Marburgvirus/fisiologia , Mimetismo Molecular , Proteínas Proto-Oncogênicas c-yes/metabolismo , Proteínas da Matriz Viral/fisiologia , Liberação de Vírus , Angiomotinas , Sítios de Ligação , Membrana Celular/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Domínios PDZ , Domínios Proteicos , Proteínas Recombinantes de Fusão/metabolismo
19.
Mol Cell ; 53(3): 484-97, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24507716

RESUMO

Tudor domain-containing protein 3 (TDRD3) is a major methylarginine effector molecule that reads methyl-histone marks and facilitates gene transcription. However, the underlying mechanism by which TDRD3 functions as a transcriptional coactivator is unknown. We identified topoisomerase IIIB (TOP3B) as a component of the TDRD3 complex. TDRD3 serves as a molecular bridge between TOP3B and arginine-methylated histones. The TDRD3-TOP3B complex is recruited to the c-MYC gene promoter primarily by the H4R3me2a mark, and the complex promotes c-MYC gene expression. TOP3B relaxes negative supercoiled DNA and reduces transcription-generated R loops in vitro. TDRD3 knockdown in cells increases R loop formation at the c-MYC locus, and Tdrd3 null mice exhibit elevated R loop formation at this locus in B cells. Tdrd3 null mice show significantly increased c-Myc/Igh translocation, a process driven by R loop structures. By reducing negative supercoiling and resolving R loops, TOP3B promotes transcription, protects against DNA damage, and reduces the frequency of chromosomal translocations.


Assuntos
Cromatina/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Proteínas/metabolismo , Animais , Arginina/metabolismo , Regulação da Expressão Gênica , Instabilidade Genômica , Células HEK293 , Humanos , Metilação , Camundongos , Camundongos Knockout , Transporte Proteico , Proteínas/genética , Proteínas/fisiologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transcrição Gênica
20.
Biochem J ; 478(10): 1943-1958, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33969871

RESUMO

The reader ability of PHD fingers is largely limited to the recognition of the histone H3 N-terminal tail. Distinct subsets of PHDs bind either H3K4me3 (a transcriptional activator mark) or H3K4me0 (a transcriptional repressor state). Structural studies have identified common features among the different H3K4me3 effector PHDs, including (1) removal of the initiator methionine residue of H3 to prevent steric interference, (2) a groove where arginine-2 binds, and (3) an aromatic cage that engages methylated lysine-4. We hypothesize that some PHDs might have the ability to engage with non-histone ligands, as long as they adhere to these three rules. A search of the human proteome revealed an enrichment of chromatin-binding proteins that met these criteria, which we termed H3 N-terminal mimicry proteins (H3TMs). Seven H3TMs were selected, and used to screen a protein domain microarray for potential effector domains, and they all had the ability to bind H3K4me3-interacting effector domains. Furthermore, the binding affinity between the VRK1 peptide and the PHD domain of PHF2 is ∼3-fold stronger than that of PHF2 and H3K4me3 interaction. The crystal structure of PHF2 PHD finger bound with VRK1 K4me3 peptide provides a molecular basis for stronger binding of VRK1 peptide. In addition, a number of the H3TMs peptides, in their unmethylated form, interact with NuRD transcriptional repressor complex. Our findings provide in vitro evidence that methylation of H3TMs can promote interactions with PHD and Tudor domain-containing proteins and potentially block interactions with the NuRD complex. We propose that these interactions can occur in vivo as well.


Assuntos
Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Histonas/química , Histonas/genética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteoma/análise , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA