Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cardiovasc Diabetol ; 22(1): 173, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438755

RESUMO

BACKGROUND: Hyperglycaemia is frequent in acute ischemic stroke and denotes a bad prognosis, even in the absence of pre-existing diabetes. However, in clinical trials treatment of elevated glucose levels with insulin did not improve stroke outcome, suggesting that collateral effects rather than hyperglycaemia itself aggravate ischemic brain damage. As reactive glucose metabolites, glyoxal and methylglyoxal are candidates for mediating the deleterious effects of hyperglycaemia in acute stroke. METHODS: In 135 patients with acute stroke, we used liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) to measure glyoxal, methylglyoxal and several of their glycated amino acid derivatives in serum. Results were verified in a second cohort of 61 stroke patients. The association of serum concentrations with standard stroke outcome scales (NIHSS, mRS) was tested. RESULTS: Glucose, glyoxal, methylglyoxal, and the glyoxal-derived glycated amino acid Nδ-(5-hydro-4-imidazolon-2-yl)ornithine (G-H1) were positively correlated with a bad stroke outcome at 3 months as measured by mRS90, at least in one of the two cohorts. However, the glycated amino acids Nε-carboxyethyllysine (CEL) and in one cohort pyrraline showed an inverse correlation with stroke outcome probably reflecting lower food intake in severe stroke. Patients with a poor outcome had higher serum concentrations of glyoxal and methylglyoxal. CONCLUSIONS: The glucose-derived α-dicarbonyl glyoxal and glycated amino acids arising from a reaction with glyoxal are associated with a poor outcome in ischemic stroke. Thus, lowering α-dicarbonyls or counteracting their action could be a therapeutic strategy for hyperglycaemic stroke.


Assuntos
Antifibrinolíticos , Hiperglicemia , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/diagnóstico , Glioxal , Aldeído Pirúvico , Estudos de Coortes , Hiperglicemia/diagnóstico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Acidente Vascular Cerebral/diagnóstico , Aminoácidos , Glucose , Glicopirrolato
2.
Ann Neurol ; 85(6): 812-822, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30973967

RESUMO

OBJECTIVE: X-linked dystonia parkinsonism (XDP) is a neurodegenerative movement disorder caused by a single mutation: SINE-VNTR-Alu (SVA) retrotransposon insertion in TAF1. Recently, a (CCCTCT)n repeat within the SVA insertion has been reported as an age-at-onset (AAO) modifier in XDP. Here we investigate the role of this hexanucleotide repeat in modifying expressivity of XDP. METHODS: We genotyped the hexanucleotide repeat in 355 XDP patients and correlated the repeat number (RN) with AAO (n = 295), initial clinical manifestation (n = 294), site of dystonia onset (n = 238), disease severity (n = 28), and cognitive function (n = 15). Furthermore, we investigated i) repeat instability by segregation analysis and Southern blotting using postmortem brain samples from two affected individuals and ii) relative TAF1 expression in blood RNA from 31 XDP patients. RESULTS: RN showed significant inverse correlations with AAO and with TAF1 expression and a positive correlation with disease severity and cognitive dysfunction. Importantly, AAO (and not RN) was directly associated with whether dystonia or parkinsonism will manifest at onset. RN was lower in patients affected by mouth/tongue dystonia compared with blepharospasm. RN was unstable across germline transmissions with an overall tendency to increase in length and exhibited somatic mosaicism in brain. INTERPRETATION: The hexanucleotide repeat within the SVA insertion acts as a genetic modifier of disease expressivity in XDP. RN-dependent TAF1 repression and subsequent differences in TAF1 mRNA levels in patients may be potentiated in the brain through somatic variability leading to the neurological phenotype. ANN NEUROL 2019;85:812-822.


Assuntos
Expansão das Repetições de DNA/genética , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/genética , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Histona Acetiltransferases/genética , Sequências Repetitivas de Ácido Nucleico/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Adulto , Distúrbios Distônicos/metabolismo , Feminino , Expressão Gênica , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Histona Acetiltransferases/biossíntese , Humanos , Masculino , Fatores Associados à Proteína de Ligação a TATA/biossíntese , Fator de Transcrição TFIID/biossíntese , Adulto Jovem
3.
Nat Commun ; 15(1): 5745, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987239

RESUMO

Complications of diabetes are often attributed to glucose and reactive dicarbonyl metabolites derived from glycolysis or gluconeogenesis, such as methylglyoxal. However, in the CNS, neurons and endothelial cells use lactate as energy source in addition to glucose, which does not lead to the formation of methylglyoxal and has previously been considered a safer route of energy consumption than glycolysis. Nevertheless, neurons and endothelial cells are hotspots for the cellular pathology underlying neurological complications in diabetes, suggesting a cause that is distinct from other diabetes complications and independent of methylglyoxal. Here, we show that in clinical and experimental diabetes plasma concentrations of dimethylglyoxal are increased. In a mouse model of diabetes, ilvb acetolactate-synthase-like (ILVBL, HACL2) is the enzyme involved in formation of increased amounts of dimethylglyoxal from lactate-derived pyruvate. Dimethylglyoxal reacts with lysine residues, forms Nε-3-hydroxy-2-butanonelysine (HBL) as an adduct, induces oxidative stress more strongly than other dicarbonyls, causes blood-brain barrier disruption, and can mimic mild cognitive impairment in experimental diabetes. These data suggest dimethylglyoxal formation as a pathway leading to neurological complications in diabetes that is distinct from other complications. Importantly, dimethylglyoxal formation can be reduced using genetic, pharmacological and dietary interventions, offering new strategies for preventing CNS dysfunction in diabetes.


Assuntos
Neuropatias Diabéticas , Glioxal , Ácido Pirúvico , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Animais , Camundongos , Glioxal/análogos & derivados , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/patologia , Glucose/metabolismo , Ácido Pirúvico/metabolismo , Acetolactato Sintase/metabolismo , Encéfalo/metabolismo , Carbono-Carbono Liases/metabolismo , Humanos , Camundongos Endogâmicos C57BL
4.
Acta Physiol (Oxf) ; 237(3): e13928, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36625310

RESUMO

Circadian clocks are important regulators of physiology and behavior. In the brain, circadian clocks have been described in many centers of the central reward system. They affect neurotransmitter signaling, neuroendocrine circuits, and the sensitivity to external stimulation. Circadian disruption affects reward signaling, promoting the development of behavioral and substance use disorders. In this review, we summarize our current knowledge of circadian clock-reward crosstalk. We show how chronodisruption affects reward signaling in different animal models. We then translate these findings to circadian aspects of human reward (dys-) function and its clinical implications. Finally, we devise approaches to and challenges in implementing the concepts of circadian medicine in the therapy of substance use disorders.


Assuntos
Relógios Circadianos , Transtornos Relacionados ao Uso de Substâncias , Animais , Humanos , Ritmo Circadiano/fisiologia , Relógios Circadianos/fisiologia , Encéfalo/fisiologia , Recompensa
5.
Mol Metab ; 69: 101691, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746332

RESUMO

OBJECTIVE: Snacking, i.e., the intake of small amounts of palatable food items, is a common behavior in modern societies, promoting overeating and obesity. Shifting food intake into the daily rest phase disrupts circadian rhythms and is also known to stimulate weight gain. We therefore hypothesized that chronic snacking in the inactive phase may promote body weight gain and that this effect is based on disruption of circadian clocks. METHODS: Male mice were fed a daily chocolate snack either during their rest or their active phase and body weight development and metabolic parameters were investigated. Snacking experiments were repeated in constant darkness and in clock-deficient mutant mice to examine the role of external and internal time cues in mediating the metabolic effects of snacking. RESULTS: Chronic snacking in the rest phase increased body weight gain and disrupted metabolic circadian rhythms in energy expenditure, body temperature, and locomotor activity. Additionally, these rest phase snacking mice assimilated more energy during the inactive phase. Body weight remained increased in rest phase snacking wildtype mice in constant darkness as well as in clock-deficient mutant mice under a regular light-dark cycle compared to mice snacking in the active phase. Weight gain effects were abolished in clock-deficient mice in constant darkness. CONCLUSIONS: Our data suggest that mistimed snacking increases energy resorption and promotes body weight gain. This effect requires a functional circadian clock at least under constant darkness conditions.


Assuntos
Lanches , Aumento de Peso , Camundongos , Animais , Masculino , Ritmo Circadiano , Obesidade , Peso Corporal
6.
Front Nutr ; 9: 956641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034915

RESUMO

Snacking of small quantities of palatable food items throughout the day is common in modern societies and is promoted by 24/7 lifestyles. Long-term mistimed high-caloric food intake disrupts endogenous circadian rhythms and supports the development of obesity and other metabolic disorders. However, less is known about the time-of-day dependent effects of snacking. We hypothesized that already a single snacking episode may affect the circadian regulation of metabolic parameters, in particular when the snack is consumed during the daily rest phase. We performed an acute snack experiment in mice by providing access to chow or chocolate either at day- or nighttime and assessed snack effects on core body temperature, locomotor activity, and gene expression in metabolic tissues. Our results show that daytime chocolate snacking leads to a higher body temperature and locomotor activity increase compared to chow and nighttime intake. This goes along with altered clock and metabolic gene expression in peripheral tissues. Changes in nutrient uptake transporter gene expression in the small intestine suggest increased glucose resorption after daytime snacking. Our results indicate an early mechanism for the adipogenic effect of mistimed high-calorie snacking.

7.
Endocrinology ; 162(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33453099

RESUMO

The term energy metabolism comprises the entirety of chemical processes associated with uptake, conversion, storage, and breakdown of nutrients. All these must be tightly regulated in time and space to ensure metabolic homeostasis in an environment characterized by cycles such as the succession of day and night. Most organisms evolved endogenous circadian clocks to achieve this goal. In mammals, a ubiquitous network of cellular clocks is coordinated by a pacemaker residing in the hypothalamic suprachiasmatic nucleus. Adipocytes harbor their own circadian clocks, and large aspects of adipose physiology are regulated in a circadian manner through transcriptional regulation of clock-controlled genes. White adipose tissue (WAT) stores energy in the form of triglycerides at times of high energy levels that then serve as fuel in times of need. It also functions as an endocrine organ, releasing factors in a circadian manner to regulate food intake and energy turnover in other tissues. Brown adipose tissue (BAT) produces heat through nonshivering thermogenesis, a process also controlled by the circadian clock. We here review how WAT and BAT contribute to the circadian regulation of energy metabolism. We describe how adipose rhythms are regulated by the interplay of systemic signals and local clocks and summarize how adipose-originating circadian factors feed-back on metabolic homeostasis. The role of adipose tissue in the circadian control of metabolism becomes increasingly clear as circadian disruption leads to alterations in adipose tissue regulation, promoting obesity and its sequelae. Stabilizing adipose tissue rhythms, in turn, may help to combat disrupted energy homeostasis and obesity.


Assuntos
Tecido Adiposo/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético/fisiologia , Adipocinas/fisiologia , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Citocinas/fisiologia , Homeostase/genética , Homeostase/fisiologia , Humanos , Termogênese/fisiologia
8.
Acta Physiol (Oxf) ; 229(1): e13446, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31965726

RESUMO

Most organisms evolved endogenous, so called circadian clocks as internal timekeeping mechanisms allowing them to adapt to recurring changes in environmental demands brought about by 24-hour rhythms such as the light-dark cycle, temperature variations or changes in humidity. The mammalian circadian clock system is based on cellular oscillators found in all tissues of the body that are organized in a hierarchical fashion. A master pacemaker located in the suprachiasmatic nucleus (SCN) synchronizes peripheral tissue clocks and extra-SCN oscillators in the brain with each other and with external time. Different time cues (so called Zeitgebers) such as light, food intake, activity and hormonal signals reset the clock system through the SCN or by direct action at the tissue clock level. While most studies on non-SCN clocks so far have focused on peripheral tissues, several extra-SCN central oscillators were characterized in terms of circadian rhythm regulation and output. Some of them are directly innervated by the SCN pacemaker, while others receive indirect input from the SCN via other neural circuits or extra-brain structures. The specific physiological function of these non-SCN brain oscillators as well as their role in the regulation of the circadian clock network remains understudied. In this review we summarize our current knowledge about the regulation and function of extra-SCN circadian oscillators in different brain regions and devise experimental approaches enabling us to unravel the organization of the circadian clock network in the central nervous system.


Assuntos
Encéfalo/fisiologia , Relógios Circadianos , Núcleo Supraquiasmático , Animais , Ritmo Circadiano , Humanos , Fotoperíodo
9.
Artigo em Inglês | MEDLINE | ID: mdl-32305706

RESUMO

As part of the "omics" technologies in the life sciences, metabolomics is becoming increasingly important. In untargeted metabolomics, unambiguous metabolite identification and the inevitable coverage bias that comes with the selection of analytical conditions present major challenges. Reliable compound annotation is essential for translating metabolomics data into meaningful biological information. Here, we developed a fast and transferable method for generating in-house MS2 libraries to improve metabolite identification. Using the new method we established an in-house MS2 library that includes over 4,000 fragmentation spectra of 506 standard compounds for 6 different normalized collision energies (NCEs). Additionally, we generated a comprehensive liquid chromatography (LC) library by testing 57 different LC-MS conditions for 294 compounds. We used the library information to develop an untargeted metabolomics screen with maximum coverage of the metabolome that was successfully tested in a study of 360 human serum samples. The current work demonstrates a workflow for LC-MS/MS-based metabolomics, with enhanced metabolite identification confidence and the possibility to select suitable analysis conditions according to the specific research interest.


Assuntos
Cromatografia Líquida/métodos , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Humanos , Metaboloma , Plasma/química , Plasma/metabolismo
10.
Sci Rep ; 8(1): 2034, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391469

RESUMO

A single nucleotide polymorphism, rs17070145, in the KIdney and BRAin expressed protein (KIBRA) gene has been associated with cognition and hippocampal volume in cognitively normal (CN) individuals. However, the impact of rs17070145 on longitudinal cognitive decline and hippocampal atrophy in CN adults at greatest risk of developing Alzheimer's disease is unknown. We investigated the impact rs17070145 has on the rate of cognitive decline and hippocampal atrophy over six years in 602 CN adults, with known brain Aß-amyloid levels and whether there is an interactive effect with APOE genotype. We reveal that whilst limited independent effects of KIBRA genotype were observed, there was an interaction with APOE in CN adults who presented with high Aß-amyloid levels across study duration. In comparison to APOE ε4-ve individuals carrying the rs17070145-T allele, significantly faster rates of cognitive decline (global, p = 0.006; verbal episodic memory, p = 0.004), and hippocampal atrophy (p = 0.04) were observed in individuals who were APOE ε4 + ve and did not carry the rs17070145-T allele. The observation of APOE effects in only non-carriers of the rs17070145-T allele, in the presence of high Aß-amyloid suggest that carriers of the rs17070145-T allele are conferred a level of resilience to the detrimental effects of high Aß-amyloid and APOE ε4.


Assuntos
Apolipoproteínas E/genética , Disfunção Cognitiva/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/genética , Polimorfismo de Nucleotídeo Único , Idoso , Peptídeos beta-Amiloides/metabolismo , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA