Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur J Appl Physiol ; 122(4): 921-933, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35015112

RESUMO

PURPOSE: Individuals with a family history of type 2 diabetes (FH +) have an increased risk of developing type 2 diabetes. Circulating microRNAs (miRNAs) have been implicated as biomarkers of type 2 diabetes risk. Here, we investigated if four circulating miRNAs related to glucose metabolism were altered in men with a FH + and we conducted a preliminary analysis to determine if miRNA expressions were responsive to 8 weeks of combined exercise training. METHODS: Sixteen young healthy men (mean ± SD; age 22.5 ± 2.5; BMI 26.4 ± 4.0) with FH + or without a family history of type 2 diabetes (FH -) underweight 8 weeks of combined endurance and resistance exercise training (n = 8 FH -; n = 8 FH +). The expression of miR-29a, miR-133a, miR-133b, and miR-155 were measured in serum before and after exercise training. QIAGEN's Ingenuity® Pathway Analysis was used to examine miRNA target genes and their involvement in glucose metabolism signaling pathways. RESULTS: There were no differences in miRNA expressions between FH - and FH + . Exercise training did not alter miRNA expressions in either FH - or FH + despite improvements in insulin sensitivity, aerobic capacity, and muscular strength. miR-29a and miR-155 were inversely related to fasting glucose, and miR-133a and miR-133b were negatively correlated with glucose tolerance; however, correlations were not observed with insulin sensitivity. CONCLUSIONS: The circulating miRNAs- miR-29a, miR-133a, miR-133b, and miR-155 are related to measures of glucose metabolism in healthy, normoglycemic men, but do not reflect peripheral insulin sensitivity or improvements in metabolic health following 8 weeks of combined exercise training.


Assuntos
MicroRNA Circulante , Diabetes Mellitus Tipo 2 , MicroRNAs , Treinamento Resistido , Adulto , Exercício Físico , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Adulto Jovem
2.
PLoS Negl Trop Dis ; 17(3): e0011223, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972298

RESUMO

Chronic Chagas cardiomyopathy (CCC) is one of the leading causes of morbidity and mortality due to cardiovascular disorders in endemic areas of Chagas disease (CD), a neglected tropical illness caused by the protozoan parasite Trypanosoma cruzi. CCC is characterized by parasite persistence and inflammatory response in the heart tissue, which occur parallel to microRNA (miRNA) alterations. Here, we investigated the miRNA transcriptome profiling in the cardiac tissue of chronically T. cruzi-infected mice treated with a suboptimal dose of benznidazole (Bz), the immunomodulator pentoxifylline alone (PTX), or the combination of both (Bz+PTX), following the CCC onset. At 150 days post-infection, Bz, PTX, and Bz+PTX treatment regimens improved electrocardiographic alterations, reducing the percentage of mice afflicted by sinus arrhythmia and second-degree atrioventricular block (AVB2) when compared with the vehicle-treated animals. miRNA Transcriptome profiling revealed considerable changes in the differential expression of miRNAs in the Bz and Bz+PTX treatment groups compared with the control (infected, vehicle-treated) group. The latter showed pathways related to organismal abnormalities, cellular development, skeletal muscle development, cardiac enlargement, and fibrosis, likely associated with CCC. Bz-Treated mice exhibited 68 differentially expressed miRNAs related to signaling pathways like cell cycle, cell death and survival, tissue morphology, and connective tissue function. Finally, the Bz+PTX-treated group revealed 58 differentially expressed miRNAs associated with key signaling pathways related to cellular growth and proliferation, tissue development, cardiac fibrosis, damage, and necrosis/cell death. The T. cruzi-induced upregulation of miR-146b-5p, previously shown in acutely infected mice and in vitro T. cruzi-infected cardiomyocytes, was reversed upon Bz and Bz+PTX treatment regimens when further experimentally validated. Our results further our understanding of molecular pathways related to CCC progression and evaluation of treatment response. Moreover, the differentially expressed miRNAs may serve as drug targets, associated molecular therapy, or biomarkers of treatment outcomes.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , MicroRNAs , Nitroimidazóis , Pentoxifilina , Tripanossomicidas , Trypanosoma cruzi , Animais , Camundongos , Cardiomiopatia Chagásica/tratamento farmacológico , Pentoxifilina/farmacologia , Pentoxifilina/uso terapêutico , Transcriptoma , Modelos Animais de Doenças , Trypanosoma cruzi/genética , Doença de Chagas/parasitologia , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , MicroRNAs/genética , Fibrose , Perfilação da Expressão Gênica , Tripanossomicidas/farmacologia
3.
Biomolecules ; 12(7)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883418

RESUMO

G protein-coupled receptors (GPCRs) are the largest class of cell-surface receptor proteins with important functions in signal transduction and often serve as therapeutic drug targets. With the rapidly growing public data on three dimensional (3D) structures of GPCRs and GPCR-ligand interactions, computational prediction of GPCR ligand binding becomes a convincing option to high throughput screening and other experimental approaches during the beginning phases of ligand discovery. In this work, we set out to computationally uncover and understand the binding of a single ligand to GPCRs from several different families. Three-dimensional structural comparisons of the GPCRs that bind to the same ligand revealed local 3D structural similarities and often these regions overlap with locations of binding pockets. These pockets were found to be similar (based on backbone geometry and side-chain orientation using APoc), and they correlate positively with electrostatic properties of the pockets. Moreover, the more similar the pockets, the more likely a ligand binding to the pockets will interact with similar residues, have similar conformations, and produce similar binding affinities across the pockets. These findings can be exploited to improve protein function inference, drug repurposing and drug toxicity prediction, and accelerate the development of new drugs.


Assuntos
Receptores Acoplados a Proteínas G , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/metabolismo
4.
Cells ; 11(2)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053370

RESUMO

In this study, we identified a novel pyrazole-based derivative (P3C) that displayed potent cytotoxicity against 27 human cancer cell lines derived from different tissue origins with 50% cytotoxic concentrations (CC50) in the low micromolar and nanomolar range, particularly in two triple-negative breast cancer (TNBC) cell lines (from 0.25 to 0.49 µM). In vitro assays revealed that P3C induces reactive oxygen species (ROS) accumulation leading to mitochondrial depolarization and caspase-3/7 and -8 activation, suggesting the participation of both the intrinsic and extrinsic apoptotic pathways. P3C caused microtubule disruption, phosphatidylserine externalization, PARP cleavage, DNA fragmentation, and cell cycle arrest on TNBC cells. In addition, P3C triggered dephosphorylation of CREB, p38, ERK, STAT3, and Fyn, and hyperphosphorylation of JNK and NF-kB in TNBC cells, indicating the inactivation of both p38MAPK/STAT3 and ERK1/2/CREB signaling pathways. In support of our in vitro assays, transcriptome analyses of two distinct TNBC cell lines (MDA-MB-231 and MDA-MB-468 cells) treated with P3C revealed 28 genes similarly affected by the treatment implicated in apoptosis, oxidative stress, protein kinase modulation, and microtubule stability.


Assuntos
Pirazóis/toxicidade , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/patologia , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Fosfatidilserinas/metabolismo , Fosforilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Pirazóis/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Tubulina (Proteína)/metabolismo
5.
Curr Oncol ; 28(5): 3610-3628, 2021 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-34590612

RESUMO

Filipino Americans show higher thyroid cancer recurrence rates compared to European Americans. Although they are likely to die of this malignancy, the molecular mechanism has not yet been determined. Recent studies demonstrated that small non-coding RNAs could be utilized to assess thyroid cancer prognosis in tumor models. The goal of this study is to determine whether microRNA (miRNA) signatures are differentially expressed in thyroid cancer in two different ethnic groups. We also determined whether these miRNA signatures are related to cancer staging. This is a retrospective study of archival samples from patients with thyroid cancer (both sexes) in the pathology division from the last ten years at Loma Linda University School of Medicine, California. Deidentified patient demographics were extracted from the patient chart. Discarded formalin-fixed paraffin-embedded tissues were collected post-surgeries. We determined the differential expressions of microRNA in archival samples from Filipino Americans compared to European Americans using the state-of-the-art technique, HiSeq4000. By ingenuity pathway analysis, we determined miRNA targets and the pathways that those targets are involved in. We validated their expressions by real-time quantitative PCR and correlated them with the clinicopathological status in a larger cohort of miRNA samples from both ethnicities. We identified the differentially upregulated/downregulated miRNA clusters in Filipino Americans compared to European Americans. Some of these miRNA clusters are known to target genes that are linked to cancer invasion and metastasis. In univariate analysis, ethnicity and tumor staging were significant factors predicting miR-4633-5p upregulation. When including these factors in a multivariate logistic regression model, ethnicity and tumor staging remained significant independent predictors of miRNA upregulation, whereas the interaction of ethnicity and tumor staging was not significant. In contrast, ethnicity remained an independent predictor of significantly downregulated miR-491-5p and let-7 family. We provide evidence that Filipino Americans showed differentially expressed tumor-tissue-derived microRNA clusters. The functional implications of these miRNAs are under investigation.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Etnicidade , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Recidiva Local de Neoplasia , Estudos Retrospectivos , Neoplasias da Glândula Tireoide/genética
6.
Front Cell Infect Microbiol ; 11: 692655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381739

RESUMO

Chronic Chagas cardiomyopathy (CCC) is the most frequent and severe form of Chagas disease, a neglected tropical illness caused by the protozoan Trypanosoma cruzi, and the main cause of morbimortality from cardiovascular problems in endemic areas. Although efforts have been made to understand the signaling pathways and molecular mechanisms underlying CCC, the immunological signaling pathways regulated by the etiological treatment with benznidazole (Bz) has not been reported. In experimental CCC, Bz combined with the hemorheological and immunoregulatory agent pentoxifylline (PTX) has beneficial effects on CCC. To explore the molecular mechanisms of Bz or Bz+PTX therapeutic strategies, C57BL/6 mice chronically infected with the T. cruzi Colombian strain (discrete typing unit TcI) and showing electrocardiographic abnormalities were submitted to suboptimal dose of Bz or Bz+PTX from 120 to 150 days postinfection. Electrocardiographic alterations, such as prolonged corrected QT interval and heart parasite load, were beneficially impacted by Bz and Bz+PTX. RT-qPCR TaqMan array was used to evaluate the expression of 92 genes related to the immune response in RNA extracted from heart tissues. In comparison with non-infected mice, 30 genes were upregulated, and 31 were downregulated in infected mice. Particularly, infection upregulated the cytokines IFN-γ, IL-12b, and IL-2 (126-, 44-, and 18-fold change, respectively) and the T-cell chemoattractants CCL3 and CCL5 (23- and 16-fold change, respectively). Bz therapy restored the expression of genes related to inflammatory response, cellular development, growth, and proliferation, and tissue development pathways, most probably linked to the cardiac remodeling processes inherent to CCC, thus mitigating the Th1-driven response found in vehicle-treated infected mice. The combined Bz+PTX therapy revealed pathways related to the modulation of cell death and survival, and organismal survival, supporting that this strategy may mitigate the progression of CCC. Altogether, our results contribute to the better understanding of the molecular mechanisms of the immune response in the heart tissue in chronic Chagas disease and reinforce that parasite persistence and dysregulated immune response underpin CCC severity. Therefore, Bz and Bz+PTX chemotherapies emerge as tools to interfere in these pathways aiming to improve CCC prognosis.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Animais , Cardiomiopatia Chagásica/tratamento farmacológico , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Nitroimidazóis
7.
Database (Oxford) ; 20202020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33216895

RESUMO

G protein-coupled receptors (GPCRs) constitute the largest group of membrane receptor proteins in eukaryotes. Due to their significant roles in various physiological processes such as vision, smell and inflammation, GPCRs are the targets of many prescription drugs. However, the functional and sequence diversity of GPCRs has kept their prediction and classification based on amino acid sequence data as a challenging bioinformatics problem. There are existing computational approaches, mainly using machine learning and statistical methods, to predict and classify GPCRs based on amino acid sequence and sequence derived features. In this paper, we describe a searchable MySQL database, named GPCR-PEnDB (GPCR Prediction Ensemble Database), of confirmed GPCRs and non-GPCRs. It was constructed with the goal of allowing users to conveniently access useful information of GPCRs in a wide range of organisms and to compile reliable training and testing datasets for different combinations of computational tools. This database currently contains 3129 confirmed GPCR and 3575 non-GPCR sequences collected from the UniProtKB/Swiss-Prot protein database, encompassing over 1200 species. The non-GPCR entries include transmembrane proteins for evaluating various prediction programs' abilities to distinguish GPCRs from other transmembrane proteins. Each protein is linked to information about its source organism, classification, sequence lengths and composition, and other derived sequence features. We present examples of using this database along with its graphical user interface, to query for GPCRs with specific sequence properties and to compare the accuracies of five tools for GPCR prediction. This initial version of GPCR-PEnDB will provide a framework for future extensions to include additional sequence and feature data to facilitate the design and assessment of software tools and experimental studies to help understand the functional roles of GPCRs. Database URL: gpcr.utep.edu/database.


Assuntos
Algoritmos , Análise de Sequência de Proteína , Sequência de Aminoácidos , Bases de Dados de Proteínas , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA