RESUMO
BACKGROUND: Knowledge of the effect of kidney transplantation on bone is limited and fragmentary. The aim of this study was to characterize the evolution of bone disease in the first post-transplant year. METHODS: We performed a prospective, observational cohort study in patients referred for kidney transplantation under a steroid-sparing immunosuppressive protocol. Bone phenotyping was done before, or at the time of, kidney transplantation, and repeated at 12 months post-transplant. The phenotyping included bone histomorphometry, bone densitometry by dual-energy x-ray absorptiometry, and biochemical parameters of bone and mineral metabolism. RESULTS: Paired data were obtained for 97 patients (median age 55 years; 72% male; 21% of patients had diabetes). Bone turnover remained normal or improved in the majority of patients (65%). Bone histomorphometry revealed decreases in bone resorption (eroded perimeter, mean 4.6% pre- to 2.3% post-transplant; P<0.001) and disordered bone formation (fibrosis, 27% pre- versus 2% post-transplant; P<0.001). Whereas bone mineralization was normal in all but one patient pretransplant, delayed mineralization was seen in 15% of patients at 1 year post-transplant. Hypophosphatemia was associated with deterioration in histomorphometric parameters of bone mineralization. Changes in bone mineral density were highly variable, ranging from -18% to +17% per year. Cumulative steroid dose was related to bone loss at the hip, whereas resolution of hyperparathyroidism was related to bone gain at both spine and hip. CONCLUSIONS: Changes in bone turnover, mineralization, and volume post-transplant are related both to steroid exposure and ongoing disturbances of mineral metabolism. Optimal control of mineral metabolism may be key to improving bone quality in kidney transplant recipients. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Evolution of Bone Histomorphometry and Vascular Calcification Before and After Renal Transplantation, NCT01886950.
Assuntos
Doenças Ósseas , Transplante de Rim , Densidade Óssea , Feminino , Humanos , Transplante de Rim/efeitos adversos , Masculino , Pessoa de Meia-Idade , Minerais , Estudos Prospectivos , EsteroidesRESUMO
RATIONALE & OBJECTIVE: Bone biopsy remains the gold standard for diagnosing renal osteodystrophy as comparable noninvasive alternatives have yet to be established. This study investigated the diagnostic accuracy of biochemical markers of skeletal remodeling to predict bone turnover. STUDY DESIGN: Cross-sectional retrospective diagnostic test study. SETTING & PARTICIPANTS: Patients with chronic kidney disease glomerular filtration rate categories 4-5, including patients treated with dialysis (G4-G5D) and kidney transplant recipients with successful transiliac bone biopsies. TESTS COMPARED: Bone turnover as determined by bone histomorphometry was compared with the following biochemical markers: full-length (amino acids 1-84) "biointact" parathyroid hormone (PTH), bone-specific alkaline phosphatase (BsAP), intact procollagen type I N-terminal propeptide (PINP), and tartrate-resistant acid phosphatase isoform 5b (TRAP5b). OUTCOME: Diagnostic performance was evaluated by area under the receiver operator characteristics curve (AUC), sensitivity, specificity, and negative and positive predictive values. Optimal diagnostic cutoffs were determined in an exploration cohort (n = 100) and validated in a separate cohort (n = 99). RESULTS: All biomarkers differed across categories of low 33 (17%), normal 109 (55%), and high 57 (29%) bone turnover. AUC values were in the range of 0.75-0.85. High negative predictive values (≥90%) were found for both high and low bone turnover, indicating the ability to rule out both conditions using the suggested biomarker cutoffs. The highest diagnostic performances were seen with combinations of biomarkers, with overall diagnostic accuracies of 90% for high turnover, and 78% for low turnover. Results were comparable for kidney transplant candidates and recipients in a sensitivity analysis. LIMITATIONS: The single-center approach and heterogeneity of the study cohort are main limitations of this study. CONCLUSIONS: We conclude that the diagnostic performance of biochemical markers of bone turnover is acceptable, with clinical utility in ruling out both high and low turnover bone disease.
Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Fosfatase Alcalina , Biomarcadores , Remodelação Óssea , Distúrbio Mineral e Ósseo na Doença Renal Crônica/diagnóstico , Estudos Transversais , Feminino , Humanos , Masculino , Hormônio Paratireóideo , Diálise Renal , Estudos RetrospectivosRESUMO
Serum calcium isotopes (δ44/42Ca) have been suggested as a non-invasive and sensitive Ca balance marker. Quantitative δ44/42Ca changes associated with Ca flux across body compartment barriers relative to the dietary Ca and the correlation of δ44/42CaSerum with bone histology are unknown. We analyzed Ca and δ44/42Ca by mass-spectrometry in rats after two weeks of standard-Ca-diet (0.5%) and after four subsequent weeks of standard- and of low-Ca-diet (0.25%). In animals on a low-Ca-diet net Ca gain was 61 ± 3% and femur Ca content 68 ± 41% of standard-Ca-diet, bone mineralized area per section area was 68 ± 15% compared to standard-Ca-diet. δ44/42Ca was similar in the diets, and decreased in feces and urine and increased in serum in animals on low-Ca-diet. δ44/42CaBone was higher in animals on low-Ca-diet, lower in the diaphysis than the metaphysis and epiphysis, and unaffected by gender. Independent of diet, δ44/42CaBone was similar in the femora and ribs. At the time of sacrifice, δ44/42CaSerum inversely correlated with intestinal Ca uptake and histological bone mineralization markers, but not with Ca content and bone mineral density by µCT. In conclusion, δ44/42CaBone was bone site specific, but mechanical stress and gender independent. Low-Ca-diet induced marked changes in feces, serum and urine δ44/42Ca in growing rats. δ44/42CaSerum inversely correlated with markers of bone mineralization.
Assuntos
Calcificação Fisiológica , Cálcio , Animais , Densidade Óssea , Cálcio/análise , Isótopos de Cálcio , Cálcio da Dieta , Dieta , RatosRESUMO
Parathyroid hormone (PTH) is a key regulator of bone turnover but can be oxidized in vivo, which impairs biological activity. Variable PTH oxidation may account for the rather poor correlation of PTH with indices of bone turnover in chronic kidney disease. Here, we tested whether non-oxidized PTH is superior to total PTH as a marker of bone turnover in 31 patients with kidney failure included from an ongoing prospective observational bone biopsy study and selected to cover the whole spectrum of bone turnover. Receiver Operating Characteristic (ROC) curves, Spearman correlation and regression analysis of non-oxidized PTH, total PTH and bone turnover markers (bone-specific alkaline phosphatase, procollagen N-terminal pro-peptide and tartrate-resistant acid phosphatase 5b) were used to assess the capability of non-oxidized PTH vs. total PTH to discriminate low from non-low and high from non-high bone turnover, as assessed quantitatively by bone histomorphometry. Serum levels of non-oxidized PTH and total PTH were strongly and significantly correlated. Histomorphometric parameters of bone turnover and the circulating bone turnover markers showed similar correlation coefficients with non-oxidized PTH and total PTH. The area under the ROC (AUROC) values for discriminating between low/non-low turnover for non-oxidized PTH and total PTH were significant and comparable (0.82 and 0.79, respectively). For high/non-high turnover the AUROCs were also significant and of the same magnitude (0.76 and 0.80, respectively). Thus, measuring non-oxidized PTH using the currently available method provides no added value compared to total PTH as an indicator of bone turnover in patients with kidney failure.
Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Falência Renal Crônica , Insuficiência Renal Crônica , Fosfatase Alcalina , Biomarcadores , Remodelação Óssea , Osso e Ossos , Distúrbio Mineral e Ósseo na Doença Renal Crônica/diagnóstico , Humanos , Falência Renal Crônica/diagnóstico , Hormônio Paratireóideo , Diálise Renal , Insuficiência Renal Crônica/diagnósticoRESUMO
BACKGROUND: Renal osteodystrophy is considered common, but is not well characterized in contemporary kidney transplant recipients. This study reports extensively on bone phenotype by bone histomorphometry, bone densitometry and novel bone biomarkers 1 year after kidney transplantation. METHODS: A transiliac bone biopsy and dual-energy X-ray absorptiometry scans were performed in 141 unselected kidney transplant recipients in this observational cohort study. Blood and 24-h urine samples were collected simultaneously. RESULTS: The median age was 57 ± 11 years, 71% were men and all were of Caucasian ethnicity. Bone turnover was normal in 71% of patients, low in 26% and high in just four cases (3%). Hyperparathyroidism with hypercalcaemia was present in 13% of patients, of which only one had high bone turnover. Delayed bone mineralization was detected in 16% of patients, who were characterized by hyperparathyroidism (137 versus 53 ρg/mL), a higher fractional excretion of phosphate (40 versus 32%) and lower levels of phosphate (2.68 versus 3.18 mg/dL) and calcidiol (29 versus 37 ng/mL) compared with patients with normal bone mineralization. Osteoporosis was present in 15-46% of patients, with the highest prevalence at the distal skeleton. The proportion of osteoporotic patients was comparable across categories of bone turnover and mineralization. CONCLUSIONS: The majority of kidney transplant recipients, including patients with osteoporosis, have normal bone turnover at 1-year post-transplant. Low bone turnover is seen in a substantial subset, while high bone turnover is rare. Vitamin D deficiency and hypophosphataemia represent potential interventional targets to improve bone health post-transplant.
Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Transplante de Rim , Absorciometria de Fóton , Idoso , Densidade Óssea , Remodelação Óssea , Osso e Ossos , Distúrbio Mineral e Ósseo na Doença Renal Crônica/etiologia , Humanos , Transplante de Rim/efeitos adversos , Masculino , Pessoa de Meia-IdadeRESUMO
Hyperostosis Cranialis Interna (HCI) is a rare bone disorder characterized by progressive intracranial bone overgrowth at the skull. Here we identified by whole-exome sequencing a dominant mutation (L441R) in SLC39A14 (ZIP14). We show that L441R ZIP14 is no longer trafficked towards the plasma membrane and excessively accumulates intracellular zinc, resulting in hyper-activation of cAMP-CREB and NFAT signaling. Conditional knock-in mice overexpressing L438R Zip14 in osteoblasts have a severe skeletal phenotype marked by a drastic increase in cortical thickness due to an enhanced endosteal bone formation, resembling the underlying pathology in HCI patients. Remarkably, L438R Zip14 also generates an osteoporotic trabecular bone phenotype. The effects of osteoblastic overexpression of L438R Zip14 therefore mimic the disparate actions of estrogen on cortical and trabecular bone through osteoblasts. Collectively, we reveal ZIP14 as a novel regulator of bone homeostasis, and that manipulating ZIP14 might be a therapeutic strategy for bone diseases.
Assuntos
Proteínas de Transporte de Cátions/genética , Homeostase/genética , Hiperostose/genética , Mutação , Osteosclerose/genética , Base do Crânio/anormalidades , Animais , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Humanos , Hiperostose/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteosclerose/metabolismo , Transdução de Sinais/genética , Base do Crânio/metabolismo , Zinco/metabolismoRESUMO
INTRODUCTION: Sucroferric oxyhydroxide (PA21) is an efficacious, well-tolerated iron-based phosphate binder and a promising alternative to existing compounds. We compared the effects of PA21 with those of a conventional phosphate binder on renal function, mineral homeostasis and vascular calcification in a chronic kidney disease-mineral and bone disorder (CKD-MBD) rat model. METHODS: To induce stable renal failure, rats were administered a 0.25% adenine diet for 8 weeks. Concomitantly, rats were treated with vehicle, 2.5 g/kg/day PA21, 5.0 g/kg/day PA21 or 3.0 g/kg/day calcium carbonate (CaCO3). Renal function and calcium/phosphorus/iron metabolism were evaluated during the study course. Renal fibrosis, inflammation, vascular calcifications and bone histomorphometry were quantified. RESULTS: Rats treated with 2.5 or 5.0 g/kg/day PA21 showed significantly lower serum creatinine and phosphorus and higher ionized calcium levels after 8 weeks of treatment compared with vehicle-treated rats. The better preserved renal function with PA21 went along with less severe anaemia, which was not observed with CaCO3. Both PA21 doses, in contrast to CaCO3, prevented a dramatic increase in fibroblast growth factor (FGF)-23 and significantly reduced the vascular calcium content while both compounds ameliorated CKD-related hyperparathyroid bone. CONCLUSIONS: PA21 treatment prevented an increase in serum FGF-23 and had, aside from its phosphate-lowering capacity, a beneficial impact on renal function decline (as assessed by the renal creatinine clearance) and related disorders. The protective effect of this iron-based phosphate binder on the kidney in rats, together with its low pill burden in humans, led us to investigate its use in patients with impaired renal function not yet on dialysis.
Assuntos
Modelos Animais de Doenças , Compostos Férricos/uso terapêutico , Falência Renal Crônica/tratamento farmacológico , Sacarose/uso terapêutico , Calcificação Vascular/prevenção & controle , Animais , Combinação de Medicamentos , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Falência Renal Crônica/complicações , Masculino , Fósforo/sangue , Ratos , Ratos Wistar , Calcificação Vascular/etiologiaRESUMO
Autosomal dominant polycystic kidney disease (ADPKD) is among the most common hereditary nephropathies. Low bone turnover osteopenia has been reported in mice with conditional deletion of the PKD1 and PKD2 genes in osteoblasts, and preliminary clinical data also suggest suppressed bone turnover in patients with ADPKD. The present study compared the bone phenotype between patients with end stage renal disease (ESRD) due to ADPKD and controls with ESRD due to other causes. Laboratory parameters of bone mineral metabolism (fibroblast growth factor 23 and sclerostin), bone turnover markers (bone alkaline phosphatase, tartrate-resistant acid phosphatase 5b) and bone mineral density (BMD, by dual energy x-ray absorptiometry, DXA) were assessed in 518 patients with ESRD, including 99 with ADPKD. Bone histomorphometry data were available in 71 patients, including 10 with ADPKD. Circulating levels of bone alkaline phosphatase were significantly lower in patients with ADPKD (17.4 vs 22.6 ng/mL), as were histomorphometric parameters of bone formation. Associations between ADPKD and parameters of bone formation persisted after adjustment for classical determinants including parathyroid hormone, age, and sex. BMD was higher in skeletal sites rich in cortical bone in patients with ADPKD compared to non-ADPKD patients (Z-score midshaft radius -0.04 vs -0.14; femoral neck -0.72 vs -1.02). Circulating sclerostin levels were significantly higher in ADPKD patients (2.20 vs 1.84 ng/L). In conclusion, patients with ESRD due to ADPKD present a distinct bone and mineral phenotype, characterized by suppressed bone turnover, better preserved cortical BMD, and high sclerostin levels.
Assuntos
Doenças Ósseas Metabólicas/etiologia , Remodelação Óssea/fisiologia , Falência Renal Crônica/patologia , Rim Policístico Autossômico Dominante/complicações , Absorciometria de Fóton , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Idoso , Animais , Biomarcadores/sangue , Densidade Óssea/fisiologia , Doenças Ósseas Metabólicas/sangue , Doenças Ósseas Metabólicas/fisiopatologia , Proteínas Morfogenéticas Ósseas/sangue , Osso e Ossos/citologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/fisiopatologia , Estudos de Casos e Controles , Cílios/patologia , Cílios/fisiologia , Feminino , Marcadores Genéticos , Humanos , Falência Renal Crônica/sangue , Masculino , Camundongos , Pessoa de Meia-Idade , Osteoblastos/citologia , Osteoblastos/patologia , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/fisiopatologiaRESUMO
The osteocytic protein sclerostin inhibits bone turnover. Serum sclerostin rises early in chronic kidney disease (CKD), but if this reflects osteocyte sclerostin production is unclear, since sclerostin is also expressed in extra-skeletal tissue. Glucocorticoid treatment impacts on serum sclerostin, but the effect on the association between serum and bone sclerostin is unknown. We sought to determine whether serum sclerostin reflects bone sclerostin in different CKD stages and how this association is influenced by glucocorticoid treatment. In a cross-sectional analysis, we investigated serum sclerostin, bone sclerostin by immunohistochemistry, and bone histomorphometry in iliac crest bone biopsies from 43 patients with CKD 3-5D, including 14 dialysis patients and 22 transplanted patients (18 kidney, 4 other). Thirty-one patients were on glucocorticoid treatment at time of biopsy. Patients with low bone turnover (bone formation rate < 97 µm²/mm²/day; N = 13) had higher median serum sclerostin levels (224.7 vs. 141.7 pg/ml; P = 0.004) and higher bone sclerostin, expressed as sclerostin positive osteocytes per bone area (12.1 vs. 5.0 Scl+ osteocytes/B.Ar; P = 0.008), than patients with non-low bone turnover (N = 28). In linear regression analyses, correcting for age, gender, dialysis status and PTH, serum sclerostin was only associated with bone sclerostin in patients not treated with glucocorticoids (r2 = 0.6, P = 0.018). For the first time, we describe that female CKD patients have higher median bone sclerostin than males (11.7 vs. 5.7 Scl+ osteocytes/B.Ar, P = 0.046), despite similar serum sclerostin levels and bone histo-morphometric parameters. We conclude that glucocorticoid treatment appears to disrupt the association of serum sclerostin with bone sclerostin in CKD.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Glucocorticoides/uso terapêutico , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/sangue , Idoso , Biópsia , Osso e Ossos/química , Osso e Ossos/patologia , Estudos Transversais , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Minerais/sangue , Minerais/metabolismo , Osteócitos/metabolismo , Osteogênese/efeitos dos fármacos , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/patologiaRESUMO
Renal transplantation is believed to have a major impact on bone health. The present prospective observational bone biopsy study aimed to define the natural history of bone histomorphometry parameters in contemporaneous de novo renal transplant recipients. Paired bone biopsies were performed at the time of transplantation and at one-year posttransplantation in an unselected cohort of 36 patients referred for deceased kidney replacement. Parameters of mineral metabolism and circulating bone turnover markers were monitored as well. Static parameters of bone formation and especially bone resorption being already low-normal in the majority of patients at the time of renal transplantation, further declined during the first posttransplant year. However, interindividual variation was substantial, and significance was reached only for bone resorption parameters. Bone mineralization and trabecular bone volume were within the normal range at the time of transplantation (83.3% and 91.7% of graft recipients, respectively) and showed little change one-year posttransplantation. Changes in osteoclast number were paralleled by changes in circulating tartrate-resistant acid phosphatase 5b levels. Finally, cumulative glucocorticoid dose, but not the posttransplantation parathyroid hormone level, associated with trabecular bone loss. Thus, the impact of renal transplantation on bone histomorphometry is limited with only bone resorption, being already low at the time of transplantation, showing a further decline.
Assuntos
Remodelação Óssea , Reabsorção Óssea/etiologia , Osso e Ossos/fisiopatologia , Transplante de Rim/efeitos adversos , Absorciometria de Fóton , Adulto , Idoso , Biomarcadores/sangue , Biópsia , Densidade Óssea , Reabsorção Óssea/sangue , Reabsorção Óssea/diagnóstico , Reabsorção Óssea/fisiopatologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Relação Dose-Resposta a Droga , Feminino , Glucocorticoides/administração & dosagem , Glucocorticoides/efeitos adversos , Humanos , Imunossupressores/administração & dosagem , Imunossupressores/efeitos adversos , Masculino , Pessoa de Meia-Idade , Osteoclastos/metabolismo , Osteoclastos/patologia , Estudos Prospectivos , Fatores de Risco , Fosfatase Ácida Resistente a Tartarato/sangue , Fatores de Tempo , Resultado do TratamentoRESUMO
Vascular calcification significantly contributes to mortality in chronic kidney disease (CKD) patients. Sevelamer and pyrophosphate (PPi) have proven to be effective in preventing vascular calcification, the former by controlling intestinal phosphate absorption, the latter by directly interfering with the hydroxyapatite crystal formation. Since most patients present with established vascular calcification, it is important to evaluate whether these compounds may also halt or reverse the progression of preexisting vascular calcification. CKD and vascular calcification were induced in male Wistar rats by a 0.75 % adenine low protein diet for 4 weeks. Treatment with PPi (30 or 120 µmol/kg/day), sevelamer carbonate (1500 mg/kg/day) or vehicle was started at the time point at which vascular calcification was present and continued for 3 weeks. Hyperphosphatemia and vascular calcification developed prior to treatment. A significant progression of aortic calcification in vehicle-treated rats with CKD was observed over the final 3-week period. Sevelamer treatment significantly reduced further progression of aortic calcification as compared to the vehicle control. No such an effect was seen for either PPi dose. Sevelamer but not PPi treatment resulted in an increase in both osteoblast and osteoid perimeter. Our study shows that sevelamer was able to reduce the progression of moderate to severe preexisting aortic calcification in a CKD rat model. Higher doses of PPi may be required to induce a similar reduction of severe established arterial calcification in this CKD model.
Assuntos
Difosfatos/farmacologia , Durapatita/antagonistas & inibidores , Insuficiência Renal Crônica/complicações , Sevelamer/farmacologia , Calcificação Vascular/patologia , Animais , Aorta/patologia , Quelantes/farmacologia , Masculino , Ratos , Ratos Wistar , Calcificação Vascular/etiologiaRESUMO
UNLABELLED: The role of lead (Pb) as an environmental cause of nephropathy is difficult to ascertain due to the difficulty to determine clinically its exposure. AIM: To assess lead levels and renal function in a group of males working in mechanical workshops. MATERIAL AND METHODS: Blood and urine samples were obtained from 100 mechanical workshop workers aged 38 ± 16 years and 95 non-exposed office clerks aged 37 ± 17 years. Blood lead and creatinine levels were determined. In exposed workers, urinary excretion of intestinal alkaline phosphatases (IAP) and N-acetyl-glucosaminidase (NAG) were measured as early markers of renal failure. RESULTS: Blood lead levels were 66.4 ± 43 and 33.6 ± 18 µg/L among mechanical workshop workers and non-exposed controls, respectively, p < 0.01. The figures for serum creatinine were 0.9 ± 0.1 and 0.9 ± 0.1 respectively, p = NS. Among exposed workers urinary excretion of IAP was 0.47 ± 0.6 U/L and of NAG, 0.92 ± 1.1 U/L. There was a positive correlation between blood lead levels and NAG excretion (r = 0.284) and IAP excretion (r = 0.346). CONCLUSIONS: Exposed workers had higher blood lead levels and there was a weak positive association between these levels and the urinary excretion of NAG and IAP.
Assuntos
Creatinina/sangue , Chumbo/sangue , Exposição Ocupacional/efeitos adversos , Insuficiência Renal/induzido quimicamente , Acetilglucosaminidase/urina , Adulto , Fosfatase Alcalina/urina , Biomarcadores/sangue , Estudos de Casos e Controles , Humanos , Chumbo/efeitos adversos , Masculino , Insuficiência Renal/diagnósticoRESUMO
The multicenter, single-arm BONAFIDE study characterized the skeletal response to cinacalcet in adult dialysis patients with plasma parathyroid hormone (PTH) levels of 300 pg/ml or more, serum calcium of 8.4 mg/dl or more, bone-specific alkaline phosphatase over 20.9 ng/ml and biopsy-proven high-turnover bone disease. Of 110 enrolled patients, 77 underwent a second bone biopsy with quantitative histomorphometry after 6-12 months of cinacalcet treatment. The median PTH decreased from 985 pg/ml at baseline to 480 pg/ml at the end of study (weeks 44-52). Bone formation rate/tissue area decreased from 728 to 336 µm(2)/mm(2)/day, osteoblast perimeter/osteoid perimeter decreased from 17.4 to 13.9%, and eroded perimeter/bone perimeter decreased from 12.7 to 8.3%. The number of patients with normal bone histology increased from none at baseline to 20 at 12 months. Two patients had adynamic bone at the end of study with a PTH under 150 pg/ml, and one patient with overt hypophosphatemia at baseline that reoccurred during follow-up developed osteomalacia. Thus, long-term treatment with cinacalcet substantially reduced PTH, diminished the elevated bone formation rate/tissue area, lowered several biochemical markers of high-turnover bone disease toward normal, and generally improved bone histology. Twenty patients had normal bone histology at follow-up, whereas most had mild hyperparathyroidism or mixed uremic osteodystrophy.
Assuntos
Doenças Ósseas Metabólicas/patologia , Calcimiméticos/uso terapêutico , Cinacalcete/uso terapêutico , Hiperparatireoidismo Secundário/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Fosfatase Alcalina/sangue , Doenças Ósseas Metabólicas/sangue , Doenças Ósseas Metabólicas/etiologia , Reabsorção Óssea/sangue , Calcimiméticos/efeitos adversos , Cálcio/sangue , Cinacalcete/efeitos adversos , Feminino , Humanos , Hiperparatireoidismo Secundário/sangue , Hiperparatireoidismo Secundário/complicações , Masculino , Pessoa de Meia-Idade , Hormônio Paratireóideo/sangue , Diálise Renal , Insuficiência Renal Crônica/terapia , Fatores de Tempo , Adulto JovemRESUMO
Both calcium-containing and noncalcium-containing phosphate binders can increase gastrointestinal calcium absorption. Previously, we observed that lanthanum carbonate administration to rats with renal failure is not associated with increased calciuria. Additionally, lanthanum carbonate treatment in dialysis patients has been associated with a less pronounced initial decrease in serum parathyroid hormone compared with other phosphate binders. For 8 days, male Wistar rats received a diet supplemented with 2% lanthanum carbonate, 2% sevelamer, 2% calcium carbonate, or 2% cellulose. Calciuria was found to be increased in animals with normal renal function treated with sevelamer or calcium carbonate but not with lanthanum carbonate. In animals with renal failure, cumulative calcium excretion showed similar results. In rats with normal renal function, serum ionized calcium levels were increased after 2 days of treatment with sevelamer, while calcium carbonate showed a smaller increase. Lanthanum carbonate did not induce differences. In animals with renal failure, no differences were found between sevelamer-treated, calcium carbonate-treated, and control groups. Lanthanum carbonate, however, induced lower ionized calcium levels within 2 days of treatment. These results were confirmed in normal human volunteers, who showed lower net calcium absorption after a single dose of lanthanum carbonate compared with sevelamer carbonate. In conclusion, these two noncalcium-containing phosphate-binding agents showed a differential effect on gastrointestinal calcium absorption. These findings may help to improve the management of calcium balance in patients with renal failure, including concomitant use of vitamin D.
Assuntos
Cálcio/metabolismo , Carbamatos/farmacologia , Celulose/farmacologia , Trato Gastrointestinal/fisiologia , Lantânio/farmacologia , Poliaminas/farmacologia , Adulto , Animais , Quelantes/farmacologia , Feminino , Humanos , Masculino , Fosfatos/química , Fosfatos/metabolismo , Ratos , Ratos Wistar , Insuficiência Renal Crônica/metabolismo , Sevelamer , Adulto JovemRESUMO
Dipeptidyl peptidase IV (DPP IV) modulates protein activity by removing dipeptides. DPP IV inhibitors are currently used to improve glucose tolerance in type 2 diabetes patients. DPP IV substrates not only increase insulin secretion but also affect bone metabolism. In this study, the effect of DPP IV inhibitor sitagliptin on bone was evaluated in normal and streptozotocin-induced diabetic rats. This study included 64 male Wistar rats divided into four groups (n = 16): two diabetic and two control groups. One diabetic and one control group received sitagliptin through drinking water. Tibiae were scanned every 3 wk using an in vivo µCT scanner. After 6 and 12 wk, rats were euthanized for histomorphometric analysis of bone parameters. The mechanical resistance of femora to fracture was assessed using a three-point bending test, and serum levels of bone metabolic markers were measured. Efficient DPP IV inhibition was achieved in sitagliptin-treated groups. Trabecular bone loss, the decrease in trabecular number, and the increase in trabecular spacing was attenuated through sitagliptin treatment in diabetic rats, as shown by in vivo µCT. Bone histomorphometry was in line with these results. µCT analysis furthermore showed that sitagliptin prevented cortical bone growth stagnation in diabetic rats, resulting in stronger femora during three-point bending. Finally, the serum levels of the resorption marker CTX-I were significantly lower in sitagliptin-treated diabetic animals compared with untreated diabetic animals. In conclusion, sitagliptin treatment attenuates bone loss and increases bone strength in diabetic rats probably through the reduction of bone resorption and independent of glycemic management.
Assuntos
Reabsorção Óssea/prevenção & controle , Osso e Ossos/efeitos dos fármacos , Força Compressiva/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Pirazinas/uso terapêutico , Triazóis/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/etiologia , Osso e Ossos/fisiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Avaliação Pré-Clínica de Medicamentos , Masculino , Ratos , Ratos Wistar , Fosfato de Sitagliptina , Estreptozocina , Estresse MecânicoRESUMO
Calcium-based phosphate binders are used to control hyperphosphatemia; however, they promote hypercalcemia and may accelerate aortic calcification. Here we compared the effect of a phosphate binder containing calcium acetate and magnesium carbonate (CaMg) to that of sevelamer carbonate on the development of medial calcification in rats with chronic renal failure induced by an adenine diet for 4 weeks. After 1 week, rats with chronic renal failure were treated with vehicle, 375 or 750 mg/kg CaMg, or 750 mg/kg sevelamer by daily gavage for 5 weeks. Renal function was significantly impaired in all groups. Vehicle-treated rats with chronic renal failure developed severe hyperphosphatemia, but this was controlled in treated groups, particularly by CaMg. Neither CaMg nor sevelamer increased serum calcium ion levels. Induction of chronic renal failure significantly increased serum PTH, dose-dependently prevented by CaMg but not sevelamer. The aortic calcium content was significantly reduced by CaMg but not by sevelamer. The percent calcified area of the aorta was significantly lower than vehicle-treated animals for all three groups. The presence of aortic calcification was associated with increased sox9, bmp-2, and matrix gla protein expression, but this did not differ in the treatment groups. Calcium content in the carotid artery was lower with sevelamer than with CaMg but that in the femoral artery did not differ between groups. Thus, treatment with either CaMg or sevelamer effectively controlled serum phosphate levels in CRF rats and reduced aortic calcification.
Assuntos
Acetatos/farmacologia , Doenças da Aorta/prevenção & controle , Quelantes/farmacologia , Hiperfosfatemia/tratamento farmacológico , Falência Renal Crônica/complicações , Magnésio/farmacologia , Fosfatos/sangue , Poliaminas/farmacologia , Uremia/etiologia , Calcificação Vascular/prevenção & controle , Adenina , Animais , Doenças da Aorta/sangue , Doenças da Aorta/etiologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Cálcio/sangue , Compostos de Cálcio/farmacologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Hiperfosfatemia/sangue , Hiperfosfatemia/etiologia , Falência Renal Crônica/sangue , Falência Renal Crônica/induzido quimicamente , Masculino , Hormônio Paratireóideo/sangue , Ratos , Ratos Wistar , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Sevelamer , Fatores de Tempo , Uremia/sangue , Calcificação Vascular/sangue , Calcificação Vascular/etiologia , Calcificação Vascular/genética , Calcificação Vascular/patologia , Proteína de Matriz GlaRESUMO
BACKGROUND: Derangements in bone metabolism and vascular calcification (VC) substantially contribute to the accelerated cardiovascular morbidity and mortality in chronic kidney disease (CKD). The Wnt signalling pathway is increasingly recognized to play an important role in bone homeostasis and VC. Circulating levels of the Wnt inhibitor sclerostin are elevated in CKD patients. The present study investigated whether the circulating levels of sclerostin are associated with all-cause mortality in haemodialysis (HD) patients. METHODS: We performed a post-hoc survival analysis in 100 prevalent HD patients (68 ± 13 years, 40 male) recruited in 2006 who were prospectively followed for median 637 (8-1000, range) days. Parameters of mineral metabolism including bone-specific alkaline phosphatase (bsAP) and serum sclerostin were determined in spare blood samples collected at baseline. RESULTS: Serum concentrations of serum sclerostin amounted to 110 (82-151) [median (iqr)] pmol/L. Patients with sclerostin levels above median were characterized by older age, higher haemoglobin and creatinine level and lower bsAP concentration. During a median follow-up of 637 days, 31 patients died. Higher circulating sclerostin levels were associated with decreased mortality in prevalent HD patients: unadjusted hazard ratio (HR) 0.51 (0.24-1.06) (P = 0.06); HR adjusted for age and gender for serum sclerostin levels above versus below median was 0.33 (0.15-0.73) (P = 0.006). When bsAP was entered in the Cox regression analysis, it replaced sclerostin in the final model. CONCLUSIONS: Our data show that high circulating sclerostin levels are associated with improved survival and suggest that a low bsAP activity may be in the causal pathway.
Assuntos
Biomarcadores/sangue , Proteínas Morfogenéticas Ósseas/sangue , Osso e Ossos/metabolismo , Diálise Renal/mortalidade , Insuficiência Renal Crônica/terapia , Calcificação Vascular/sangue , Proteínas Adaptadoras de Transdução de Sinal , Idoso , Fosfatase Alcalina/sangue , Causas de Morte , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Marcadores Genéticos , Humanos , Masculino , Prognóstico , Estudos Prospectivos , Calcificação Vascular/mortalidadeRESUMO
The present study investigated to what extent normalization of bone turnover goes along with a reduction of high-dose calcitriol-induced vascular calcifications in uremic rats. Five groups of male Sprague-Dawley rats were studied: sham-operated controls (n = 7), subtotally nephrectomized (SNX) uremic (CRF) animals (n = 12), CRF + calcitriol (vitD) (0.25 µg/kg/day) (n = 12), CRF + vitD + cinacalcet (CIN) (10 mg/kg/day) (n = 12), and CRF + vitD + parathyroidectomy (PTX) (n = 12). Treatment started 2 weeks after SNX and continued for the next 14 weeks. High-dose calcitriol treatment in hyperparathyroid rats went along with the development of distinct vascular calcification, which was significantly reduced by >50 %, in both CIN-treated and PTX animals. Compared to control animals and those of the CRF group, calcitriol treatment either in combination with CIN or PTX or not was associated with a significant increase in bone area comprising ±50 % of the total tissue area. However, whereas excessive woven bone accompanied by a dramatically increased osteoid width/area was seen in the CRF + vitD group, CIN treatment and PTX resulted in significantly reduced serum PTH level, which was accompanied by a distinct reduction of both the bone formation rate and the amount of osteoid. These data indicate that less efficient calcium and phosphorus incorporation in bone inherent to the severe hyperparathyroidism in vitamin D-treated uremic rats goes along with excessive vascular calcification, a process which is partially reversed by CIN treatment in combination with a more efficacious bone mineralization, thus restricting the availability of calcium and phosphate for being deposited in the vessel wall.
Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Calcitriol/efeitos adversos , Cálcio/sangue , Hiperparatireoidismo/tratamento farmacológico , Naftalenos/farmacologia , Uremia/induzido quimicamente , Calcificação Vascular/prevenção & controle , Vitaminas/efeitos adversos , Animais , Cálcio/metabolismo , Cinacalcete , Masculino , Naftalenos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Uremia/metabolismo , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/metabolismoRESUMO
Vascular calcification, albeit heterogeneous in terms of biological and physicochemical properties, has been associated with ageing, lifestyle, diabetes, and chronic kidney disease (CKD). It is unknown whether or not moderately impaired renal function (CKD stages 2-4) affects the physiochemical composition and/or the formation of magnesium-containing tricalcium phosphate ([Ca,Mg](3)[PO(4)](2), whitlockite) in arterial microcalcification. Therefore, a high-resolution scanning X-ray diffraction analysis (European Synchrotron Radiation Facility, Grenoble, France) utilizing histological sections of paraffin-embedded arterial specimens derived from atherosclerotic patients with normal renal function (n = 15) and CKD (stages 2-4, n = 13) was performed. This approach allowed us to spatially assess the contribution of calcium phosphate (apatite) and whitlockite to arterial microcalcification. Per group, the number of samples (13 vs. 12) with sufficient signal intensity and total lengths of regions (201 vs. 232 µm) giving rise to diffractograms ("informative regions") were comparable. Summarizing all informative regions per group into one composite sample revealed calcium phosphate/apatite as the leading mineral phase in CKD patients, whereas in patients with normal renal function the relative contribution of whitlockite and calcium phosphate/apatite was on the same order of magnitude (CKD, calcium phosphate/apatite 157 µm, whitlockite 38.7 µm; non-CKD, calcium phosphate/apatite 79.0 µm, whitlockite 94.1 µm; each p < 0.05). Our results, although based on a limited number of samples, indicate that chronic impairment of renal function affects local magnesium homeostasis and thus contributes to the physicochemical composition of microcalcification in atherosclerotic patients.
Assuntos
Artérias Carótidas/patologia , Doenças das Artérias Carótidas/etiologia , Falência Renal Crônica/complicações , Calcificação Vascular/etiologia , Idoso , Idoso de 80 Anos ou mais , Fosfatos de Cálcio/metabolismo , Doenças das Artérias Carótidas/patologia , Feminino , Humanos , Falência Renal Crônica/patologia , Masculino , Pessoa de Meia-Idade , Espectrometria por Raios X , Calcificação Vascular/patologia , Difração de Raios XRESUMO
BACKGROUND: Increased bone loss has been associated with the development of vascular calcification in patients with chronic renal failure (CRF). In this study, the effect of impaired bone metabolism on aortic calcifications was investigated in uremic rats with or without ovariectomy. METHODS: CRF was induced by administration of a 0.75% adenine/2.5% protein diet for 4 weeks. In one group, osteoporosis was induced by ovariectomy (CRF-OVX), while the other group underwent a sham-operation instead (CRF). A third group consisted of ovariectomized rats with normal renal function (OVX). At regular time intervals throughout the study, bone status and aortic calcifications were evaluated by in vivo micro-CT. At sacrifice after 6 weeks of CRF, bone histomorphometry was performed and vascular calcification was assessed by bulk calcium analysis and Von Kossa staining. RESULTS: Renal function was significantly impaired in the CRF-OVX and CRF groups. Trabecular bone loss was seen in all groups. In the CRF-OVX and CRF groups, trabecular bone density was restored after adenine withdrawal, which coincided with cortical bone loss and the development of medial calcifications in the aorta. No significant differences with regard to the degree of aortic calcifications were seen between the two CRF groups. Neither cortical bone loss nor calcifications were seen in the OVX group. Cortical bone loss significantly correlated with the severity of vascular calcification in the CRF-OVX and CRF groups, but no associations with trabecular bone changes were found. CONCLUSIONS: Cortical rather than trabecular bone loss is associated with the process of calcification in rats with adenine- induced CRF.