Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 572(7768): 270-274, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31291642

RESUMO

Receptor kinases of the Catharanthus roseus RLK1-like (CrRLK1L) family have emerged as important regulators of plant reproduction, growth and responses to the environment1. Endogenous RAPID ALKALINIZATION FACTOR (RALF) peptides2 have previously been proposed as ligands for several members of the CrRLK1L family1. However, the mechanistic basis of this perception is unknown. Here we report that RALF23 induces a complex between the CrRLK1L FERONIA (FER) and LORELEI (LRE)-LIKE GLYCOSYLPHOSPHATIDYLINOSITOL (GPI)-ANCHORED PROTEIN 1 (LLG1) to regulate immune signalling. Structural and biochemical data indicate that LLG1 (which is genetically important for RALF23 responses) and the related LLG2 directly bind RALF23 to nucleate the assembly of RALF23-LLG1-FER and RALF23-LLG2-FER heterocomplexes, respectively. A conserved N-terminal region of RALF23 is sufficient for the biochemical recognition of RALF23 by LLG1, LLG2 or LLG3, and binding assays suggest that other RALF peptides that share this conserved N-terminal region may be perceived by LLG proteins in a similar manner. Structural data also show that RALF23 recognition is governed by the conformationally flexible C-terminal sides of LLG1, LLG2 and LLG3. Our work reveals a mechanism of peptide perception in plants by GPI-anchored proteins that act together with a phylogenetically unrelated receptor kinase. This provides a molecular framework for understanding how diverse RALF peptides may regulate multiple processes, through perception by distinct heterocomplexes of CrRLK1L receptor kinases and GPI-anchored proteins of the LRE and LLG family.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas Ligadas por GPI/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfotransferases/metabolismo , Proteínas de Arabidopsis/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Modelos Moleculares , Mutagênese , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fosfotransferases/genética , Maleabilidade , Ligação Proteica/genética , Conformação Proteica , Multimerização Proteica
2.
EMBO Rep ; 23(5): e53281, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35229426

RESUMO

Plant immune responses must be tightly controlled for proper allocation of resources for growth and development. In plants, endogenous signaling peptides regulate developmental and growth-related processes. Recent research indicates that some of these peptides also have regulatory functions in the control of plant immune responses. This classifies these peptides as phytocytokines as they show analogies with metazoan cytokines. However, the mechanistic basis for phytocytokine-mediated regulation of plant immunity remains largely elusive. Here, we identify GOLVEN2 (GLV2) peptides as phytocytokines in Arabidopsis thaliana. GLV2 signaling enhances sensitivity of plants to elicitation with immunogenic bacterial elicitors and contributes to resistance against virulent bacterial pathogens. GLV2 is perceived by ROOT MERISTEM GROWTH FACTOR 1 INSENSITIVE (RGI) receptors. RGI mutants show reduced elicitor sensitivity and enhanced susceptibility to bacterial infection. RGI3 forms ligand-induced complexes with the pattern recognition receptor (PRR) FLAGELLIN SENSITIVE 2 (FLS2), suggesting that RGIs are part of PRR signaling platforms. GLV2-RGI signaling promotes PRR abundance independent of transcriptional regulation and controls plant immunity via a previously undescribed mechanism of phytocytokine activity.


Assuntos
Arabidopsis , Imunidade Vegetal , Animais , Arabidopsis/genética , Flagelina , Imunidade Vegetal/genética , Receptores de Superfície Celular , Transdução de Sinais
3.
Nature ; 561(7722): E8, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29973716

RESUMO

In this Letter, an incorrect version of the Supplementary Information file was inadvertently used, which contained several errors. The details of references 59-65 were missing from the end of the Supplementary Discussion section on page 4. In addition, the section 'Text 3. Y2H on ICD interactions' incorrectly referred to 'Extended Data Fig. 4d' instead of 'Extended Data Fig. 3d' on page 3. Finally, the section 'Text 4. Interaction network analysis' incorrectly referred to 'Fig. 1b and Extended Data Fig. 6' instead of 'Fig. 2b and Extended Data Fig. 7' on page 3. These errors have all been corrected in the Supplementary Information.

4.
Nature ; 553(7688): 342-346, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29320478

RESUMO

The cells of multicellular organisms receive extracellular signals using surface receptors. The extracellular domains (ECDs) of cell surface receptors function as interaction platforms, and as regulatory modules of receptor activation. Understanding how interactions between ECDs produce signal-competent receptor complexes is challenging because of their low biochemical tractability. In plants, the discovery of ECD interactions is complicated by the massive expansion of receptor families, which creates tremendous potential for changeover in receptor interactions. The largest of these families in Arabidopsis thaliana consists of 225 evolutionarily related leucine-rich repeat receptor kinases (LRR-RKs), which function in the sensing of microorganisms, cell expansion, stomata development and stem-cell maintenance. Although the principles that govern LRR-RK signalling activation are emerging, the systems-level organization of this family of proteins is unknown. Here, to address this, we investigated 40,000 potential ECD interactions using a sensitized high-throughput interaction assay, and produced an LRR-based cell surface interaction network (CSILRR) that consists of 567 interactions. To demonstrate the power of CSILRR for detecting biologically relevant interactions, we predicted and validated the functions of uncharacterized LRR-RKs in plant growth and immunity. In addition, we show that CSILRR operates as a unified regulatory network in which the LRR-RKs most crucial for its overall structure are required to prevent the aberrant signalling of receptors that are several network-steps away. Thus, plants have evolved LRR-RK networks to process extracellular signals into carefully balanced responses.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Leucina/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Arabidopsis/citologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34853170

RESUMO

In nature, roots of healthy plants are colonized by multikingdom microbial communities that include bacteria, fungi, and oomycetes. A key question is how plants control the assembly of these diverse microbes in roots to maintain host-microbe homeostasis and health. Using microbiota reconstitution experiments with a set of immunocompromised Arabidopsis thaliana mutants and a multikingdom synthetic microbial community (SynCom) representative of the natural A. thaliana root microbiota, we observed that microbiota-mediated plant growth promotion was abolished in most of the tested immunocompromised mutants. Notably, more than 40% of between-genotype variation in these microbiota-induced growth differences was explained by fungal but not bacterial or oomycete load in roots. Extensive fungal overgrowth in roots and altered plant growth was evident at both vegetative and reproductive stages for a mutant impaired in the production of tryptophan-derived, specialized metabolites (cyp79b2/b3). Microbiota manipulation experiments with single- and multikingdom microbial SynComs further demonstrated that 1) the presence of fungi in the multikingdom SynCom was the direct cause of the dysbiotic phenotype in the cyp79b2/b3 mutant and 2) bacterial commensals and host tryptophan metabolism are both necessary to control fungal load, thereby promoting A. thaliana growth and survival. Our results indicate that protective activities of bacterial root commensals are as critical as the host tryptophan metabolic pathway in preventing fungal dysbiosis in the A. thaliana root endosphere.


Assuntos
Arabidopsis/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Triptofano/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Bactérias/metabolismo , Disbiose/metabolismo , Fungos/metabolismo , Microbiota/genética , Microbiota/fisiologia , Micoses/metabolismo , Oomicetos/metabolismo , Desenvolvimento Vegetal , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Microbiologia do Solo , Simbiose/fisiologia
6.
European J Org Chem ; 2022(27): e202200313, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-36035813

RESUMO

Oligosaccharide fragments of fungal cell wall glycans are important molecular probes for studying both the biology of fungi and fungal infections of humans, animals, and plants. The fungal cell wall contains large amounts of various polysaccharides that are ligands for pattern recognition receptors (PRRs), eliciting an immune response upon recognition. Towards the establishment of a glycan array platform for the identification of new ligands of plant PRRs, tri-, penta-, and heptasaccharide fragments of different cell wall polysaccharides were prepared. Chito- and ß-(1→6)-gluco-oligosaccharides were synthesized by automated glycan assembly (AGA), and α-(1→3)- and α-(1→4)-gluco-oligosaccharides were synthesized in solution using a recently reported highly α-selective glycosylation methodology. Incubation of plants with the synthesized oligosaccharides revealed i) length dependence for plant activation by chito-oligosaccharides and ii) ß-1,6-glucan oligosaccharides as a new class of glycans capable of triggering plant activation.

7.
Proc Natl Acad Sci U S A ; 116(17): 8525-8534, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30948631

RESUMO

The rice immune receptor XA21 is activated by the sulfated microbial peptide required for activation of XA21-mediated immunity X (RaxX) produced by Xanthomonas oryzae pv. oryzae (Xoo). Mutational studies and targeted proteomics revealed that the RaxX precursor peptide (proRaxX) is processed and secreted by the protease/transporter RaxB, the function of which can be partially fulfilled by a noncognate peptidase-containing transporter component B (PctB). proRaxX is cleaved at a Gly-Gly motif, yielding a mature peptide that retains the necessary elements for RaxX function as an immunogen and host peptide hormone mimic. These results indicate that RaxX is a prokaryotic member of a previously unclassified and understudied group of eukaryotic tyrosine sulfated ribosomally synthesized, posttranslationally modified peptides (RiPPs). We further demonstrate that sulfated RaxX directly binds XA21 with high affinity. This work reveals a complete, previously uncharacterized biological process: bacterial RiPP biosynthesis, secretion, binding to a eukaryotic receptor, and triggering of a robust host immune response.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Genes Bacterianos/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Redes e Vias Metabólicas/genética , Oryza/imunologia , Oryza/metabolismo , Oryza/microbiologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeos/química , Peptídeos/genética , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/imunologia , Xanthomonas/genética , Xanthomonas/metabolismo , Xanthomonas/patogenicidade
8.
Proc Natl Acad Sci U S A ; 113(12): 3389-94, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26944079

RESUMO

Plants use receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs) that are typical of whole classes of microbes. After ligand perception, many leucine-rich repeat (LRR)-containing PRRs interact with the LRR-RK BRI1-ASSOCIATED KINASE 1 (BAK1). BAK1 is thus expected to interact with unknown PRRs. Here, we used BAK1 as molecular bait to identify a previously unknown LRR-RLP required for the recognition of the csp22 peptide derived from bacterial cold shock protein. We established a method to identify proteins that interact with BAK1 only after csp22 treatment. BAK1 was expressed transiently in Nicotiana benthamiana and immunopurified after treatment with csp22. BAK1-associated proteins were identified by mass spectrometry. We identified several proteins including known BAK1 interactors and a previously uncharacterized LRR-RLP that we termed RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 RESPONSIVENESS (NbCSPR). This RLP associates with BAK1 upon csp22 treatment, and NbCSPR-silenced plants are impaired in csp22-induced defense responses. NbCSPR confers resistance to bacteria in an age-dependent and flagellin-induced manner. As such, it limits bacterial growth and Agrobacterium-mediated transformation of flowering N. benthamiana plants. Transgenic expression of NbCSPR into Arabidopsis thaliana conferred responsiveness to csp22 and antibacterial resistance. Our method may be used to identify LRR-type RKs and RLPs required for PAMP perception/responsiveness, even when the active purified PAMP has not been defined.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas e Peptídeos de Choque Frio/fisiologia , Nicotiana/imunologia , Nicotiana/microbiologia
9.
Genes Dev ; 25(3): 232-7, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21289069

RESUMO

Receptor tyrosine kinases control many critical processes in metazoans, but these enzymes appear to be absent in plants. Recently, two Arabidopsis receptor kinases--BRASSINOSTEROID INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED KINASE1 (BAK1), the receptor and coreceptor for brassinosteroids--were shown to autophosphorylate on tyrosines. However, the cellular roles for tyrosine phosphorylation in plants remain poorly understood. Here, we report that the BRI1 KINASE INHIBITOR 1 (BKI1) is tyrosine phosphorylated in response to brassinosteroid perception. Phosphorylation occurs within a reiterated [KR][KR] membrane targeting motif, releasing BKI1 into the cytosol and enabling formation of an active signaling complex. Our work reveals that tyrosine phosphorylation is a conserved mechanism controlling protein localization in all higher organisms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Ativação Enzimática , Proteínas Quinases/metabolismo , Tirosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência Conservada , Modelos Moleculares , Mutação , Fosforilação , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência
10.
Trends Biochem Sci ; 39(10): 447-56, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25089011

RESUMO

Plants must adapt to their environment and require mechanisms for sensing their surroundings and responding appropriately. An expanded family of more than 200 leucine-rich repeat (LRR) receptor kinases (LRR-RKs) transduces fluctuating and often contradictory signals from the environment into changes in nuclear gene expression. Two LRR-RKs, BRASSINOSTEROID INSENSITIVE 1 (BRI1), a steroid receptor, and FLAGELLIN SENSITIVE 2 (FLS2), an innate immune receptor that recognizes bacterial flagellin, act cooperatively to partition necessary growth-defense trade-offs. BRI1 and FLS2 share common signaling components and slightly different activation mechanisms. BRI1 and FLS2 are paradigms for understanding the signaling mechanisms of LRR-containing receptors in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Quinases/fisiologia , Transdução de Sinais/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Modelos Moleculares , Desenvolvimento Vegetal , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sequências Repetitivas de Aminoácidos
11.
Nature ; 474(7352): 467-71, 2011 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-21666665

RESUMO

Polyhydroxylated steroids are regulators of body shape and size in higher organisms. In metazoans, intracellular receptors recognize these molecules. Plants, however, perceive steroids at membranes, using the membrane-integral receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1). Here we report the structure of the Arabidopsis thaliana BRI1 ligand-binding domain, determined by X-ray diffraction at 2.5 Å resolution. We find a superhelix of 25 twisted leucine-rich repeats (LRRs), an architecture that is strikingly different from the assembly of LRRs in animal Toll-like receptors. A 70-amino-acid island domain between LRRs 21 and 22 folds back into the interior of the superhelix to create a surface pocket for binding the plant hormone brassinolide. Known loss- and gain-of-function mutations map closely to the hormone-binding site. We propose that steroid binding to BRI1 generates a docking platform for a co-receptor that is required for receptor activation. Our findings provide insight into the activation mechanism of this highly expanded family of plant receptors that have essential roles in hormone, developmental and innate immunity signalling.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Colestanóis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Esteroides Heterocíclicos/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Sítios de Ligação , Brassinosteroides , Colestanóis/química , Cristalografia por Raios X , Ativação Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Reguladores de Crescimento de Plantas/química , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Esteroides Heterocíclicos/química , Relação Estrutura-Atividade
12.
New Phytol ; 206(2): 522-40, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25615890

RESUMO

Because they are tethered in space, plants have to make the most of their local growth environment. In order to grow in an ever-changing environment, plants constantly remodel their shapes. This adaptive attribute requires the orchestration of complex environmental signals at the cellular and organismal levels. A battery of small molecules, classically known as phytohormones, allows plants to change their body plan by using highly integrated signaling networks and transcriptional cascades. Amongst these hormones, brassinosteroids (BRs), the polyhydroxylated steroid of plants, influence plant responsiveness to the local environment and exquisitely promote, or interfere with, many aspects of plant development. The molecular circuits that wire steroid signals at the cell surface to the promoters of thousands of genes in the nucleus have been defined in the past decade. This review recapitulates how the transduction of BR signals impacts the temporally unfolding programs of plant growth. First, we summarize the paradigmatic BR signaling pathway acting primarily in cellular expansion. Secondly, we describe the current wiring diagram and the temporal dynamics of the BR signal transduction network. And finally we provide an overview of how key players in BR signaling act as molecular gates to transduce BR signals onto other signaling pathways.


Assuntos
Brassinosteroides/metabolismo , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Plantas/genética , Transdução de Sinais , Sequência de Aminoácidos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transporte Proteico , Alinhamento de Sequência
13.
Proc Natl Acad Sci U S A ; 109(1): 297-302, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22087001

RESUMO

Metazoans and plants use pattern recognition receptors (PRRs) to sense conserved microbial-associated molecular patterns (MAMPs) in the extracellular environment. In plants, the bacterial MAMPs flagellin and elongation factor Tu (EF-Tu) activate distinct, phylogenetically related cell surface pattern recognition receptors of the leucine-rich repeat receptor kinase (LRR-RK) family called FLS2 and EF-Tu receptor, respectively. BAK1 is an LRR-RK coreceptor for both FLS2 and EF-Tu receptor. BAK1 is also a coreceptor for the plant brassinosteroid (BR) receptor, the LRR-RK BRI1. Binding of BR to BRI1 primarily promotes cell elongation. Here, we tune the BR pathway response to establish how plant cells can generate functionally different cellular outputs in response to MAMPs and pathogens. We demonstrate that BR can act antagonistically or synergistically with responses to MAMPs. We further show that the synergistic activities of BRs on MAMP responses require BAK1. Our results highlight the importance of plant steroid homeostasis as a critical step in the establishment of plant immunity. We propose that tradeoffs associated with plasticity in the face of infection are layered atop plant steroid developmental programs.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Brassinosteroides/metabolismo , Imunidade Vegetal/imunologia , Pseudomonas syringae/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/biossíntese , Brassinosteroides/farmacologia , Morte Celular/efeitos dos fármacos , Flagelina/farmacologia , Homeostase/efeitos dos fármacos , Imunidade Vegetal/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
14.
Proc Natl Acad Sci U S A ; 108(20): 8503-7, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21464298

RESUMO

Receptor kinases with leucine-rich repeat (LRR) extracellular domains form the largest family of receptors in plants. In the few cases for which there is mechanistic information, ligand binding in the extracellular domain often triggers the recruitment of a LRR-coreceptor kinase. The current model proposes that this recruitment is mediated by their respective kinase domains. Here, we show that the extracellular LRR domain of BRI1-ASSOCIATED KINASE1 (BAK1), a coreceptor involved in the disparate processes of cell surface steroid signaling and immunity in plants, is critical for its association with specific ligand-binding LRR-containing receptors. The LRRs of BAK1 thus serve as a platform for the molecular assembly of signal-competent receptors. We propose that this mechanism represents a paradigm for LRR receptor activation in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Plantas/enzimologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Proteínas de Repetições Ricas em Leucina , Sequências Repetitivas de Aminoácidos
15.
Sci Immunol ; 8(79): eabq7001, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608151

RESUMO

Flagellin, the protein subunit of the bacterial flagellum, stimulates the innate immune receptor Toll-like receptor 5 (TLR5) after pattern recognition or evades TLR5 through lack of recognition. This binary response fails to explain the weak agonism of flagellins from commensal bacteria, raising the question of how TLR5 response is tuned. Here, we screened abundant flagellins present in metagenomes from human gut for both TLR5 recognition and activation and uncovered a class of flagellin-TLR5 interaction termed silent recognition. Silent flagellins were weak TLR5 agonists despite pattern recognition. Receptor activity was tuned by a TLR5-flagellin interaction distal to the site of pattern recognition that was present in Salmonella flagellin but absent in silent flagellins. This interaction enabled flagellin binding to preformed TLR5 dimers and increased TLR5 signaling by several orders of magnitude. Silent recognition by TLR5 occurred in human organoids and mice, and silent flagellin proteins were present in human stool. These flagellins were produced primarily by the abundant gut bacteria Lachnospiraceae and were enriched in nonindustrialized populations. Our findings provide a mechanism for the innate immune system to tolerate commensal-derived flagellins while remaining vigilant to the presence of flagellins produced by pathogens.


Assuntos
Flagelina , Receptor 5 Toll-Like , Animais , Humanos , Camundongos , Bactérias , Flagelina/metabolismo , Transdução de Sinais , Intestinos
16.
Curr Opin Plant Biol ; 62: 102044, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33979769

RESUMO

The detection of molecular signals derived from other organisms is central to the evolutionary success of plants in the colonization of Earth. The sensory coding of these signals is critical for marshaling local and systemic immune responses that keep most invading organisms at bay. Plants detect immune signals inside and outside their cells using receptors. Here, we focus on receptors that function at the cell surface. We present recent work that expands our understanding of the repertoire of immune signals sensed by this family of receptors.


Assuntos
Plantas , Receptores de Reconhecimento de Padrão , Imunidade Vegetal/genética , Plantas/genética
17.
Nat Plants ; 7(5): 587-597, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34007035

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a low-abundance membrane lipid essential for plasma membrane function1,2. In plants, mutations in phosphatidylinositol 4-phosphate (PI4P) 5-kinases (PIP5K) suggest that PI(4,5)P2 production is involved in development, immunity and reproduction3-5. However, phospholipid synthesis is highly intricate6. It is thus likely that steady-state depletion of PI(4,5)P2 triggers confounding indirect effects. Furthermore, inducible tools available in plants allow PI(4,5)P2 to increase7-9 but not decrease, and no PIP5K inhibitors are available. Here, we introduce iDePP (inducible depletion of PI(4,5)P2 in plants), a system for the inducible and tunable depletion of PI(4,5)P2 in plants in less than three hours. Using this strategy, we confirm that PI(4,5)P2 is critical for various aspects of plant development, including root growth, root-hair elongation and organ initiation. We show that PI(4,5)P2 is required to recruit various endocytic proteins, including AP2-µ, to the plasma membrane, and thus to regulate clathrin-mediated endocytosis. Finally, we find that inducible PI(4,5)P2 perturbation impacts the dynamics of the actin cytoskeleton as well as microtubule anisotropy. Together, we propose that iDePP is a simple and efficient genetic tool to test the importance of PI(4,5)P2 in given cellular or developmental responses, and also to evaluate the importance of this lipid in protein localization.


Assuntos
Arabidopsis/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Inositol Polifosfato 5-Fosfatases/genética , Fosfatidilinositol 4,5-Difosfato/fisiologia , Fosfolipídeos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas
18.
Cell Host Microbe ; 29(4): 635-649.e9, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33713602

RESUMO

Immune systems restrict microbial pathogens by identifying "non-self" molecules called microbe-associated molecular patterns (MAMPs). It is unclear how immune responses are tuned to or by MAMP diversity present in commensal microbiota. We systematically studied the variability of commensal peptide derivatives of flagellin (flg22), a MAMP detected by plants. We define substantial functional diversity. Most flg22 peptides evade recognition, while others contribute to evasion by manipulating immunity through antagonism and signal modulation. We establish a paradigm of signal integration, wherein the sequential signaling outputs of the flagellin receptor are separable and allow for reprogramming by commensal-derived flg22 epitope variants. Plant-associated communities are enriched for immune evading flg22 epitopes, but upon physiological stress that represses the immune system, immune-activating flg22 epitopes become enriched. The existence of immune-manipulating epitopes suggests that they evolved to either communicate or utilize the immune system for host colonization and thus can influence commensal microbiota community composition.


Assuntos
Epitopos/imunologia , Flagelina/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Imunidade Vegetal , Bactérias/genética , Imunidade , Microbiota , Peptídeos , Ralstonia , Simbiose
19.
Nat Commun ; 12(1): 4194, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234144

RESUMO

Photomorphogenesis, light-mediated development, is an essential feature of all terrestrial plants. While chloroplast development and brassinosteroid (BR) signaling are known players in photomorphogenesis, proteins that regulate both pathways have yet to be identified. Here we report that DE-ETIOLATION IN THE DARK AND YELLOWING IN THE LIGHT (DAY), a membrane protein containing DnaJ-like domain, plays a dual-role in photomorphogenesis by stabilizing the BR receptor, BRI1, as well as a key enzyme in chlorophyll biosynthesis, POR. DAY localizes to both the endomembrane and chloroplasts via its first transmembrane domain and chloroplast transit peptide, respectively, and interacts with BRI1 and POR in their respective subcellular compartments. Using genetic analysis, we show that DAY acts independently on BR signaling and chlorophyll biogenesis. Collectively, this work uncovers DAY as a factor that simultaneously regulates BR signaling and chloroplast development, revealing a key regulator of photomorphogenesis that acts across cell compartments.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana/metabolismo , Morfogênese/fisiologia , Proteínas Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brassinosteroides/metabolismo , Clorofila/biossíntese , Cloroplastos/metabolismo , Estiolamento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/isolamento & purificação , Luz , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Morfogênese/efeitos da radiação , Mutação , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , RNA-Seq , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Plântula/crescimento & desenvolvimento , Transdução de Sinais/fisiologia
20.
Cell Host Microbe ; 29(4): 620-634.e9, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33713601

RESUMO

Immune systems respond to "non-self" molecules termed microbe-associated molecular patterns (MAMPs). Microbial genes encoding MAMPs have adaptive functions and are thus evolutionarily conserved. In the presence of a host, these genes are maladaptive and drive antagonistic pleiotropy (AP) because they promote microbe elimination by activating immune responses. The role AP plays in balancing the functionality of MAMP-coding genes against their immunogenicity is unknown. To address this, we focused on an epitope of flagellin that triggers antibacterial immunity in plants. Flagellin is conserved because it enables motility. Here, we decode the immunogenic and motility profiles of this flagellin epitope and determine the spectrum of amino acid mutations that drives AP. We discover two synthetic mutational tracks that undermine the detection activities of a plant flagellin receptor. These tracks generate epitopes with either antagonist or weaker agonist activities. Finally, we find signatures of these tracks layered atop each other in natural Pseudomonads.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/imunologia , Epitopos/genética , Flagelina/genética , Imunidade , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA