Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 147(7): 1438-9, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22196721

RESUMO

The level of an mRNA within a cell depends on both its rate of synthesis and rate of decay. Now, independent studies by Bregman et al. and Trcek et al. provide evidence that these two processes are integrated. They show that transcription factors and DNA promoters can directly influence the relative stability of transcripts that they produce.

2.
J Virol ; : e0078824, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975769

RESUMO

The cellular Notch signal transduction pathway is intimately associated with infections by Kaposi's sarcoma-associated herpesvirus (KSHV) and other gamma-herpesviruses. RBP-Jk, the cellular DNA binding component of the canonical Notch pathway, is the key Notch downstream effector protein in virus-infected and uninfected animal cells. Reactivation of KSHV from latency requires the viral lytic switch protein, Rta, to form complexes with RBP-Jk on numerous sites within the viral DNA. Constitutive Notch activity is essential for KSHV pathophysiology in models of Kaposi's sarcoma (KS) and Primary Effusion Lymphoma (PEL), and we demonstrate that Notch1 is also constitutively active in infected Vero cells. Although the KSHV genome contains >100 RBP-Jk DNA motifs, we show that none of the four isoforms of activated Notch can productively reactivate the virus from latency in a highly quantitative trans-complementing reporter virus system. Nevertheless, Notch contributed positively to reactivation because broad inhibition of Notch1-4 with gamma-secretase inhibitor (GSI) or expression of dominant negative mastermind-like1 (dnMAML1) coactivators severely reduced production of infectious KSHV from Vero cells. Reduction of KSHV production is associated with gene-specific reduction of viral transcription in both Vero and PEL cells. Specific inhibition of Notch1 by siRNA partially reduces the production of infectious KSHV, and NICD1 forms promoter-specific complexes with viral DNA during reactivation. We conclude that constitutive Notch activity is required for the robust production of infectious KSHV, and our results implicate activated Notch1 as a pro-viral member of a MAML1/RBP-Jk/DNA complex during viral reactivation. IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) manipulates the host cell oncogenic Notch signaling pathway for viral reactivation from latency and cell pathogenesis. KSHV reactivation requires that the viral protein Rta functionally interacts with RBP-Jk, the DNA-binding component of the Notch pathway, and with promoter DNA to drive transcription of productive cycle genes. We show that the Notch pathway is constitutively active during KSHV reactivation and is essential for robust production of infectious virus progeny. Inhibiting Notch during reactivation reduces the expression of specific viral genes yet does not affect the growth of the host cells. Although Notch cannot reactivate KSHV alone, the requisite expression of Rta reveals a previously unappreciated role for Notch in reactivation. We propose that activated Notch cooperates with Rta in a promoter-specific manner that is partially programmed by Rta's ability to redistribute RBP-Jk DNA binding to the virus during reactivation.

3.
Nucleic Acids Res ; 45(13): 7886-7896, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28575287

RESUMO

A unique feature of RNA polymerase II (RNA pol II) is its long C-terminal extension, called the carboxy-terminal domain (CTD). The well-studied eukaryotes possess a tandemly repeated 7-amino-acid sequence, called the canonical CTD, which orchestrates various steps in mRNA synthesis. Many eukaryotes possess a CTD devoid of repeats, appropriately called a non-canonical CTD, which performs completely unknown functions. Trypanosoma brucei, the etiologic agent of African Sleeping Sickness, deploys an RNA pol II that contains a non-canonical CTD to accomplish an unusual transcriptional program; all protein-coding genes are transcribed as part of a polygenic precursor mRNA (pre-mRNA) that is initiated within a several-kilobase-long region, called the transcription start site (TSS), which is upstream of the first protein-coding gene in the polygenic array. In this report, we show that the non-canonical CTD of T. brucei RNA pol II is important for normal protein-coding gene expression, likely directing RNA pol II to the TSSs within the genome. Our work reveals the presence of a primordial CTD code within eukarya and indicates that proper recognition of the chromatin landscape is a central function of this RNA pol II-distinguishing domain.


Assuntos
Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Trypanosoma brucei brucei/enzimologia , Substituição de Aminoácidos , Animais , Cromatina/genética , Cromatina/metabolismo , Expressão Gênica , Genes de Protozoários , Modelos Biológicos , Mutagênese Sítio-Dirigida , Domínios Proteicos , Proteínas de Protozoários/genética , RNA Polimerase II/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Coelhos , Sequências de Repetição em Tandem , Sítio de Iniciação de Transcrição , Trypanosoma brucei brucei/genética
4.
Parasitol Res ; 117(4): 1095-1104, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29473141

RESUMO

Trypanosoma cruzi, the protozoan parasite that causes Chagas disease in humans, has a complex life cycle that promotes survival in disparate environments. In each environment, the parasite must fine-tune its metabolic pathways to divide and multiply. In the absence of recognizable transcriptional gene regulation, it is apparent that protein levels are determined by post-transcriptional mechanisms. Post-transcriptional gene control is influenced by RNA-binding proteins that target mRNAs in the cell's cytoplasm. To initiate the study of post-transcriptional activities in T. cruzi, we studied this organism's ortholog of RBP42, a trypanosomal RNA-binding protein. RBP42 was originally detected in Trypanosoma brucei and was shown to target a subset of mRNAs that encode proteins governing central carbon metabolism. T. cruzi RBP42 structurally resembles T. brucei RBP42, sharing an NTF2 domain at its amino terminus and a single RNA-binding domain (specifically, the RNA recognition motif, or RRM), at its carboxy terminus. A phylogenetic analysis reveals that an NTF2 and a single RRM are distinguishing features of all RBP42 orthologs within the broad kinetoplastid grouping. T. cruzi RBP42 is expressed in all life cycle stages of the parasite as determined by immunoblot and immunofluorescence microscopy. In each case, the protein is localized to the cytoplasm, indicating a role for T. cruzi RBP42 in post-transcriptional activities in all stages of the parasite life cycle. We speculate that RBP42 influences the dynamic metabolic pathways responsible for parasite infection and transmission.


Assuntos
Proteínas de Protozoários/biossíntese , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Doença de Chagas/parasitologia , Citoplasma/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Estágios do Ciclo de Vida , Filogenia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/genética
5.
RNA ; 18(11): 1968-83, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22966087

RESUMO

RNA-binding proteins that target mRNA coding regions are emerging as regulators of post-transcriptional processes in eukaryotes. Here we describe a newly identified RNA-binding protein, RBP42, which targets the coding region of mRNAs in the insect form of the African trypanosome, Trypanosoma brucei. RBP42 is an essential protein and associates with polysome-bound mRNAs in the cytoplasm. A global survey of RBP42-bound mRNAs was performed by applying HITS-CLIP technology, which captures protein-RNA interactions in vivo using UV light. Specific RBP42-mRNA interactions, as well as mRNA interactions with a known RNA-binding protein, were purified using specific antibodies. Target RNA sequences were identified and quantified using high-throughput RNA sequencing. Analysis revealed that RBP42 bound mainly within the coding region of mRNAs that encode proteins involved in cellular energy metabolism. Although the mechanism of RBP42's function is unclear at present, we speculate that RBP42 plays a critical role in modulating T. brucei energy metabolism.


Assuntos
Metabolismo Energético/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/metabolismo , RNA de Protozoário/metabolismo , Proteínas de Ligação a RNA/metabolismo , Trypanosoma brucei brucei/genética , Regiões 3' não Traduzidas , Sequência de Aminoácidos , Sítios de Ligação , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Dados de Sequência Molecular , Fases de Leitura Aberta , Polirribossomos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/isolamento & purificação , Homologia de Sequência de Aminoácidos , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo
6.
Eukaryot Cell ; 10(9): 1230-40, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21743004

RESUMO

Deadenylation is often the rate-limiting event in regulating the turnover of cellular mRNAs in eukaryotes. Removal of the poly(A) tail initiates mRNA degradation by one of several decay pathways, including deadenylation-dependent decapping, followed by 5' to 3' exonuclease decay or 3' to 5' exosome-mediated decay. In trypanosomatids, mRNA degradation is important in controlling the expression of differentially expressed genes. Genomic annotation studies have revealed several potential deadenylases. Poly(A)-specific RNase (PARN) is a key deadenylase involved in regulating gene expression in mammals, Xenopus oocytes, and higher plants. Trypanosomatids possess three different PARN genes, PARN-1, -2, and -3, each of which is expressed at the mRNA level in two life-cycle stages of the human parasite Trypanosoma brucei. Here we show that T. brucei PARN-1 is an active deadenylase. To determine the role of PARN-1 on mRNA stability in vivo, we overexpressed this protein and analyzed perturbations in mRNA steady-state levels as well as mRNA half-life. Interestingly, a subset of mRNAs was affected, including a family of mRNAs that encode stage-specific coat proteins. These data suggest that PARN-1 functions in stage-specific protein production.


Assuntos
Exorribonucleases/genética , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Trypanosoma brucei brucei/genética , Exorribonucleases/metabolismo , Meia-Vida , Humanos , Análise em Microsséries , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/metabolismo
7.
Proc Natl Acad Sci U S A ; 106(32): 13242-7, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19666603

RESUMO

In trypanosomes, the production of mRNA relies on the synthesis of the spliced leader (SL) RNA. Expression of the SL RNA is initiated at the only known RNA polymerase II promoter in these parasites. In the pathogenic trypanosome, Trypanosoma brucei, transcription factor IIB (tTFIIB) is essential for SL RNA gene transcription and cell viability, but has a highly divergent primary sequence in comparison to TFIIB in well-studied eukaryotes. Here we describe the 2.3 A resolution structure of the C-terminal domain of tTFIIB (tTFIIB(C)). The tTFIIB(C) structure consists of 2 closely packed helical modules followed by a C-terminal extension of 32 aa. Using the structure as a guide, alanine substitutions of basic residues in regions analogous to functionally important regions of the well-studied eukaryotic TFIIB support conservation of a general mechanism of TFIIB function in eukaryotes. Strikingly, tTFIIB(C) contains additional loops and helices, and, in contrast to the highly basic DNA binding surface of human TFIIB, contains a neutral surface in the corresponding region. These attributes probably mediate trypanosome-specific interactions and have implications for the apparent bidirectional transcription by RNA polymerase II in protein-encoding gene expression in these organisms.


Assuntos
Fator de Transcrição TFIIB/química , Trypanosoma brucei brucei/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , DNA/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Dobramento de Proteína , Estabilidade Proteica , Estrutura Terciária de Proteína , Eletricidade Estática , Homologia Estrutural de Proteína , Fator de Transcrição TFIIB/isolamento & purificação , Fator de Transcrição TFIIB/metabolismo , Transcrição Gênica
8.
RNA ; 15(8): 1554-64, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19541768

RESUMO

A new member of the FHIT protein family, designated HIT-45, has been identified in the African trypanosome Trypanosoma brucei. Recombinant HIT-45 proteins were purified from trypanosomal and bacterial protein expression systems and analyzed for substrate specificity using various dinucleoside polyphosphates, including those that contain the 5'-mRNA cap, i.e., m(7)GMP. This enzyme exhibited typical dinucleoside triphosphatase activity (EC 3.6.1.29), having its highest specificity for diadenosine triphosphate (ApppA). However, the trypanosome enzyme contains a unique amino-terminal extension, and hydrolysis of cap dinucleotides with monomethylated guanosine or dimethylated guanosine always yielded m(7)GMP (or m(2,7)GMP) as one of the reaction products. Interestingly, m(7)Gpppm(3)(N6, N6, 2'O)A was preferred among the methylated substrates. This hypermethylated dinucleotide is unique to trypanosomes and may be an intermediate in the decay of cap 4, i.e., m(7)Gpppm(3)(N6, N6, 2'O)Apm(2'O)Apm(2'O)Cpm(2)(N3, 2'O)U, that occurs in these organisms.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Hidrolases Anidrido Ácido/genética , Sequência de Aminoácidos , Animais , Fosfatos de Dinucleosídeos/metabolismo , Genes de Protozoários , Cinética , Metilação , Modelos Biológicos , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Protozoários/genética , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Trypanosoma brucei brucei/genética
9.
Nucleic Acids Res ; 35(Web Server issue): W300-4, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17517784

RESUMO

RADAR is a web server that provides a multitude of functionality for RNA data analysis and research. It can align structure-annotated RNA sequences so that both sequence and structure information are taken into consideration during the alignment process. This server is capable of performing pairwise structure alignment, multiple structure alignment, database search and clustering. In addition, RADAR provides two salient features: (i) constrained alignment of RNA secondary structures, and (ii) prediction of the consensus structure for a set of RNA sequences. RADAR will be able to assist scientists in performing many important RNA mining operations, including the understanding of the functionality of RNA sequences, the detection of RNA structural motifs and the clustering of RNA molecules, among others. The web server together with a software package for download is freely accessible at http://datalab.njit.edu/biodata/rna/RSmatch/server.htm and http://www.ccrnp.ncifcrf.gov/~bshapiro/


Assuntos
Biologia Computacional/métodos , Conformação de Ácido Nucleico , RNA/química , Algoritmos , Sequência de Bases , Simulação por Computador , Sequência Conservada , Bases de Dados Genéticas , Humanos , Dados de Sequência Molecular , RNA não Traduzido , Sequências Reguladoras de Ácido Ribonucleico , Alinhamento de Sequência , Análise de Sequência de RNA , Homologia de Sequência do Ácido Nucleico
10.
Mol Cell Biol ; 25(16): 7314-22, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16055739

RESUMO

Protein-coding genes of trypanosomes are mainly transcribed polycistronically and cleaved into functional mRNAs in a process that requires trans splicing of a capped 39-nucleotide RNA derived from a short transcript, the spliced-leader (SL) RNA. SL RNA genes are individually transcribed from the only identified trypanosome RNA polymerase II promoter. We have purified and characterized a sequence-specific SL RNA promoter-binding complex, tSNAP(c), from the pathogenic parasite Trypanosoma brucei, which induces robust transcriptional activity within the SL RNA gene. Two tSNAP(c) subunits resemble essential components of the metazoan transcription factor SNAP(c), which directs small nuclear RNA transcription. A third subunit is unrelated to any eukaryotic protein and identifies tSNAP(c) as a unique trypanosomal transcription factor. Intriguingly, the unusual trypanosome TATA-binding protein (TBP) tightly associates with tSNAPc and is essential for SL RNA gene transcription. These findings provide the first view of the architecture of a transcriptional complex that assembles at an RNA polymerase II-dependent gene promoter in a highly divergent eukaryote.


Assuntos
RNA Líder para Processamento , Proteína de Ligação a TATA-Box/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Núcleo Celular/metabolismo , Cromatografia , DNA/química , Eletroforese em Gel de Poliacrilamida , Imunoglobulina G/química , Imunoprecipitação , Técnicas In Vitro , Modelos Genéticos , Dados de Sequência Molecular , Fases de Leitura Aberta , Peptídeos/química , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei
11.
Methods Mol Biol ; 442: 83-94, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18369780

RESUMO

RNA interference (RNAi) is a cellular mechanism that is often exploited as a technique for quelling the expression of a specific gene. RNAi studies are carried out in vivo, making this a powerful means for the study of protein function in situ Several trypanosomatids, including those organisms responsible for human and animal diseases, naturally possess the machinery necessary for RNAi manipulations. This allows for the use of RNAi in unraveling many of the pressing questions regarding the parasite's unique biology. The completion of the Trypanosoma brucei genome sequence, coupled with several powerful genetic tools, has resulted in widespread utilization of RNAi in this organism. The key steps for RNAi-based reduction of gene expression, including parasite cell culture, DNA transfection, RNAi expression, and experimental execution, are discussed with a focus on procyclic forms of Trypanosoma brucei.


Assuntos
Interferência de RNA , Trypanosoma brucei brucei/genética , Animais , Células Cultivadas , Genoma Helmíntico , Humanos , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Trypanosoma brucei brucei/fisiologia
12.
Trends Parasitol ; 23(5): 187-9; discussion 190, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17374509

RESUMO

Parasites of the Trypanosomatidae family are unable to synthesize purines. Instead, they rely on their hosts to supply these necessary compounds. The article by Gudin et al. identifies three transport mechanisms of the equilibrative nucleoside transporter family by which nucleosides and nucleobases are transported in this medically important family of organisms. The work by Gudin et al. characterizes the dynamics of these transporters and points to further areas for future genetic and therapeutic experiments.


Assuntos
Proteínas de Transporte de Nucleobases/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , Pirimidinas/metabolismo , Trypanosoma/genética , Trypanosoma/metabolismo , Animais , Transporte Biológico , Mutação , Proteínas de Transporte de Nucleobases/genética , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Purinas/metabolismo , Pirimidinas/biossíntese , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
13.
Mol Biochem Parasitol ; 146(2): 135-41, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16427709

RESUMO

Trypanosoma brucei and the other members of the trypanosomatid family of parasitic protozoa, contain an unusual RNA polymerase II enzyme, uncoordinated mRNA 5' capping and transcription initiation events, and most likely contain an abridged set of transcription factors. Pre-mRNA start sites remain elusive. In addition, two important life cycle stage-specific mRNAs are transcribed by RNA polymerase I. This review interprets these unusual transcription traits in the context of parasite biology.


Assuntos
Transcrição Gênica , Trypanosoma brucei brucei/genética , Animais , RNA Polimerase I/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , RNA de Protozoário/biossíntese , Sítio de Iniciação de Transcrição , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/crescimento & desenvolvimento
14.
Mol Biochem Parasitol ; 150(2): 201-10, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16962183

RESUMO

In Trypanosoma brucei, transcription by RNA polymerase II accounts for the expression of the spliced leader (SL) RNA and most protein coding mRNAs. To understand the regulation of RNA polymerase II transcription in these parasites, we have purified a transcriptionally active enzyme through affinity chromatography of its essential subunit, RPB4. The enzyme preparation is active in both promoter-independent and promoter-dependent in vitro transcription assays. Importantly, the enzyme is sensitive to alpha-amanitin inhibition, a hallmark of eukaryotic RNA polymerase II enzymes. Using mass spectrometric analysis we have identified the previously unobserved RPB12 subunit of T. brucei RNA polymerase II. TbRPB12 contains a conserved CX(2)CX(10-15)CX(2)C zinc binding motif that is characteristic of other eukaryotic RPB12 polypeptides. We also identified seven proteins that associate with T. brucei RNA polymerase II. While both bioinformatics and biochemical analysis have focused on the subunit structure of trypanosome RNA polymerases, this is the first study that reveals a functional RNA polymerase II enzyme.


Assuntos
RNA Polimerase II/química , Trypanosoma brucei brucei/enzimologia , Amanitinas/farmacologia , Sequência de Aminoácidos , Animais , Cromatografia de Afinidade , Estágios do Ciclo de Vida , Espectrometria de Massas , Dados de Sequência Molecular , Proteínas de Protozoários/química , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , RNA Polimerase II/isolamento & purificação , RNA Polimerase II/metabolismo , RNA Líder para Processamento , Alinhamento de Sequência , Fator de Transcrição TFIIB/metabolismo , Transcrição Gênica , Transfecção , Trypanosoma brucei brucei/crescimento & desenvolvimento
15.
Nucleic Acids Res ; 30(18): 4040-50, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12235388

RESUMO

mRNA turnover is a regulated process that contributes to the steady state level of cytoplasmic mRNA. The amount of each mRNA determines, to a large extent, the amount of protein produced by that particular transcript. In trypanosomes, there is little transcriptional regulation; therefore, differential mRNA stability significantly contributes to mRNA levels in each stage of the parasite life cycle. To investigate the enzymatic activities that contribute to mRNA turnover, we developed a cell-free system for mRNA turnover using the trypanosome Leptomonas seymouri. We identified a decapping activity that removed m(7)GDP from mRNAs that contain an m(7)GpppN cap at their 5' end. In yeast, the release of m(7)GDP by the pyrophosphatase Dcp1p/Dcp2p is a rate-limiting step in mRNA turnover. A secondary enzymatic activity, similar to the human cap scavenger activity, was identified in the trypanosome extracts. Both the human and trypanosome scavenger activities generate m(7)GMP from short capped RNA and are inhibited by addition in trans of m(7)GpppG. A third enzymatic activity uncovered in the parasite extracts functioned as a 3' to 5' exonuclease. Importantly, this exonuclease activity was stimulated by an AU-rich element present in the RNA. In summary, the cell-free system has defined several RNA turnover steps that likely contribute to regulated mRNA decay in trypanosomes.


Assuntos
Exonucleases/metabolismo , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Trypanosomatina/genética , Animais , Poli A/genética , Capuzes de RNA/genética , RNA Mensageiro/genética , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Sequências Reguladoras de Ácido Nucleico/fisiologia , Trypanosomatina/citologia , Trypanosomatina/metabolismo
16.
Curr Mol Med ; 4(6): 577-84, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15357209

RESUMO

It is becoming increasingly clear that parasitic protozoa remain a scourge to humans in the 21st century. The trypanosomes are a diverse group of insect-transmitted parasites that wiggle their way through multiple life cycle stages as they destroy human lives. Exquisitely detailed studies of these organisms reveal basic differences in gene expression that separate these single celled eukaryotes from multicellular eukaryotic organisms and have suggested numerous potential drug targets.


Assuntos
Regulação da Expressão Gênica , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Trypanosoma/genética , Trypanosoma/metabolismo , Animais , RNA Polimerases Dirigidas por DNA/metabolismo , Genes de Protozoários , Variação Genética , Modelos Moleculares , Regiões Promotoras Genéticas , RNA/biossíntese , RNA Mensageiro/metabolismo , Transcrição Gênica , Trypanosoma/enzimologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
17.
Mol Biochem Parasitol ; 199(1-2): 1-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25725478

RESUMO

Trypanosomes are early-branched eukaryotes that show an unusual dependence on post-transcriptional mechanisms to regulate gene expression. RNA-binding proteins are crucial in controlling mRNA fate in these organisms, but their RNA substrates remain largely unknown. Here we have analyzed on a global scale the mRNAs associated with the Trypanosoma brucei RNA-binding protein DRBD3/PTB1, by capturing ribonucleoprotein complexes using UV cross-linking and subsequent immunoprecipitation. DRBD3/PTB1 associates with many transcripts encoding ribosomal proteins and translation factors. Consequently, silencing of DRBD3/PTB1 expression altered the protein synthesis rate. DRBD3/PTB1 also binds to mRNAs encoding the enzymes required to obtain energy through the oxidation of proline to succinate. We hypothesize that DRBD3/PTB1 is a key player in RNA regulon-based gene control influencing protein synthesis in trypanosomes.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de RNA , Trypanosoma brucei brucei/genética , Imunoprecipitação , Ligação Proteica
18.
Methods Mol Biol ; 257: 181-92, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14770006

RESUMO

Removal of the 5' cap from a messenger RNA (mRNA) is an integral part of all mRNA decay pathways and can be a highly regulated event. Assays designed to assess decapping in vitro need to effectively resolve four products of mRNA decay: 7meGpppG produced by 3'-5' shortening of the transcript by the exosome, 7meGMP produced by the scavenger decapping enzyme DcpS acting on the product of exosomal decay, 7meGDP produced by the Dcp1/2 decapping enzyme, and free phosphate, which can be generated by phosphatases in the extract acting upon either of the two products of decapping noted above. We have outlined both thin-layer chromatography and acrylamide-gel based approaches that can be used to assess decapping activities.


Assuntos
Cromatografia em Camada Fina/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Capuzes de RNA , RNA Mensageiro/genética , Endorribonucleases/metabolismo , Células HeLa , Humanos , RNA Mensageiro/química , Ribossomos/fisiologia
20.
Mol Biochem Parasitol ; 186(2): 139-42, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22999857

RESUMO

RNA polymerase II (RNAP-II) synthesizes the m(7)G-capped Spliced Leader (SL) RNA and most protein-coding mRNAs in trypanosomes. RNAP-II recruitment to DNA usually requires a set of transcription factors that make sequence-specific contacts near transcriptional start sites within chromosomes. In trypanosomes, the transcription factor TFIIB is necessary for RNAP-II-dependent SL RNA transcription. However, the trypanosomal TFIIB (tTFIIB) lacks the highly basic DNA binding region normally found in the C-terminal region of TFIIB proteins. To assess the precise pattern of tTFIIB binding within the SL RNA gene locus, as well as within several other loci, we performed chromatin immunoprecipitation/microarray analysis using a tiled gene array with a probe spacing of 10 nucleotides. We found that tTFIIB binds non-randomly within the SL RNA gene locus mainly within a 220-nt long region that straddles the transcription start site. tTFIIB does not bind within the small subunit (SSU) rRNA locus, indicating that trypanosomal TFIIB is not a component of an RNAP-I transcriptional complex. Interestingly, discrete binding sites were observed within the putative promoter regions of two loci on different chromosomes. These data suggest that although trypanosomal TFIIB lacks a highly basic DNA binding region, it nevertheless localizes to discrete regions of chromatin that include the SL RNA gene promoter.


Assuntos
Cromossomos/genética , Cromossomos/metabolismo , Regiões Promotoras Genéticas , RNA Líder para Processamento , Fator de Transcrição TFIIB/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , Análise em Microsséries , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA