Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(4): 2847-2860, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37185710

RESUMO

Pompe disease (PD) is a monogenic autosomal recessive disorder caused by biallelic pathogenic variants of the GAA gene encoding lysosomal alpha-glucosidase; its loss causes glycogen storage in lysosomes, mainly in the muscular tissue. The genotype-phenotype correlation has been extensively discussed, and caution is recommended when interpreting the clinical significance of any mutation in a single patient. As there is no evidence that environmental factors can modulate the phenotype, the observed clinical variability in PD suggests that genetic variants other than pathogenic GAA mutations influence the mechanisms of muscle damage/repair and the overall clinical picture. Genes encoding proteins involved in glycogen synthesis and catabolism may represent excellent candidates as phenotypic modifiers of PD. The genes analyzed for glycogen synthesis included UGP2, glycogenin (GYG1-muscle, GYG2, and other tissues), glycogen synthase (GYS1-muscle and GYS2-liver), GBE1, EPM2A, NHLRC1, GSK3A, and GSK3B. The only enzyme involved in glycogen catabolism in lysosomes is α-glucosidase, which is encoded by GAA, while two cytoplasmic enzymes, phosphorylase (PYGB-brain, PGL-liver, and PYGM-muscle) and glycogen debranching (AGL) are needed to obtain glucose 1-phosphate or free glucose. Here, we report the potentially relevant variants in genes related to glycogen synthesis and catabolism, identified by whole exome sequencing in a group of 30 patients with late-onset Pompe disease (LOPD). In our exploratory analysis, we observed a reduced number of variants in the genes expressed in muscles versus the genes expressed in other tissues, but we did not find a single variant that strongly affected the phenotype. From our work, it also appears that the current clinical scores used in LOPD do not describe muscle impairment with enough qualitative/quantitative details to correlate it with genes that, even with a slightly reduced function due to genetic variants, impact the phenotype.

2.
J Inherit Metab Dis ; 43(3): 574-585, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31707734

RESUMO

Niemann-Pick disease type C (NPC) and Tangier disease are genetically and clinically distinct rare inborn errors of metabolism. NPC is caused by defects in either NPC1 or NPC2; whereas Tangier disease is caused by a defect in ABCA1. Tangier disease is currently without therapy, whereas NPC can be treated with miglustat, a small molecule inhibitor of glycosphingolipid biosynthesis that slows the neurological course of the disease. When a Tangier disease patient was misdiagnosed with NPC and treated with miglustat, her symptoms improved. This prompted us to consider whether there is mechanistic convergence between these two apparently unrelated rare inherited metabolic diseases. In this study, we found that when ABCA1 is defective (Tangier disease) there is secondary inhibition of the NPC disease pathway, linking these two diseases at the level of cellular pathophysiology. In addition, this study further supports the hypothesis that miglustat, as well as other substrate reduction therapies, may be potential therapeutic agents for treating Tangier disease as fibroblasts from multiple Tangier patients were corrected by miglustat treatment.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Transportador 1 de Cassete de Ligação de ATP/genética , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , 1-Desoxinojirimicina/uso terapêutico , Adulto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pessoa de Meia-Idade , Proteína C1 de Niemann-Pick , Resultado do Tratamento
3.
Genet Med ; 21(3): 591-600, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29997386

RESUMO

PURPOSE: We studied microRNAs as potential biomarkers for Pompe disease. METHODS: We analyzed microRNA expression by small RNA-seq in tissues from the disease murine model at two different ages (3 and 9 months), and in plasma from Pompe patients. RESULTS: In the mouse model we found 211 microRNAs that were differentially expressed in gastrocnemii and 66 in heart, with a different pattern of expression at different ages. In a preliminary analysis in plasma from six patients 55 microRNAs were differentially expressed. Sixteen of these microRNAs were common to those dysregulated in mouse tissues. These microRNAs are known to modulate the expression of genes involved in relevant pathways for Pompe disease pathophysiology (autophagy, muscle regeneration, muscle atrophy). One of these microRNAs, miR-133a, was selected for further quantitative real-time polymerase chain reaction analysis in plasma samples from 52 patients, obtained from seven Italian and Dutch biobanks. miR-133a levels were significantly higher in Pompe disease patients than in controls and correlated with phenotype severity, with higher levels in infantile compared with late-onset patients. In three infantile patients miR-133a decreased after start of enzyme replacement therapy and evidence of clinical improvement. CONCLUSION: Circulating microRNAs may represent additional biomarkers of Pompe disease severity and of response to therapy.


Assuntos
Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/genética , MicroRNAs/genética , Adulto , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/fisiologia , Pessoa de Meia-Idade
4.
Value Health ; 22(9): 1003-1011, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31511176

RESUMO

BACKGROUND: The lack of epidemiological and clinical data is a major obstacle in health service planning for rare diseases. Patient registries are examples of real-world data that may fill the information gap. OBJECTIVE: We describe the Rare Disease Registry of the Friuli Venezia Giulia region of Italy and its potential for research and health planning. METHODS: The Rare Disease Registry data were linked with information on mortality, hospital discharges, ambulatory care, and drug prescriptions contained in administrative databases. All information is anonymous, and data linkage was based on a stochastic key univocal for each patient. Average annual costs owing to hospitalizations, outpatient care, and medications were estimated. RESULTS: Implementation of the Registry started in 2010, and 4250 participants were registered up to 2017. A total of 2696 patients were living in the region as of January 1, 2017. The overall raw prevalence of rare diseases was 22 per 10,000 inhabitants, with higher prevalence in the pediatric population. The most common disease groups were congenital malformations, chromosomal and genetic syndromes, and circulatory and nervous diseases. In 2017, 30 patients died, 648 were hospitalized, and 2355 received some type of ambulatory care. The total annual estimated cost was approximately €6.5 million, with great variability in the average patient cost across diseases. CONCLUSIONS: The possibility of following the detailed real-world care experience of patients with each specific rare disease and assessing the costs related to each step in their care path represents a unique opportunity to identify inefficiencies, optimize care, and reduce waste of resources.


Assuntos
Doenças Raras/epidemiologia , Sistema de Registros/estatística & dados numéricos , Adulto , Idoso , Protocolos Clínicos , Eficiência Organizacional , Feminino , Gastos em Saúde/estatística & dados numéricos , Recursos em Saúde/estatística & dados numéricos , Serviços de Saúde/estatística & dados numéricos , Hospitalização/estatística & dados numéricos , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Vigilância em Saúde Pública , Doenças Raras/economia , Doenças Raras/mortalidade , Fatores Socioeconômicos
5.
Intern Med J ; 49(5): 578-591, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30414226

RESUMO

BACKGROUND: Gaucher disease (GD) presents with a range of signs and symptoms. Physicians can fail to recognise the early stages of GD owing to a lack of disease awareness, which can lead to significant diagnostic delays and sometimes irreversible but avoidable morbidities. AIM: The Gaucher Earlier Diagnosis Consensus (GED-C) initiative aimed to identify signs and co-variables considered most indicative of early type 1 and type 3 GD, to help non-specialists identify 'at-risk' patients who may benefit from diagnostic testing. METHODS: An anonymous, three-round Delphi consensus process was deployed among a global panel of 22 specialists in GD (median experience 17.5 years, collectively managing almost 3000 patients). The rounds entailed data gathering, then importance ranking and establishment of consensus, using 5-point Likert scales and scoring thresholds defined a priori. RESULTS: For type 1 disease, seven major signs (splenomegaly, thrombocytopenia, bone-related manifestations, anaemia, hyperferritinaemia, hepatomegaly and gammopathy) and two major co-variables (family history of GD and Ashkenazi-Jewish ancestry) were identified. For type 3 disease, nine major signs (splenomegaly, oculomotor disturbances, thrombocytopenia, epilepsy, anaemia, hepatomegaly, bone pain, motor disturbances and kyphosis) and one major co-variable (family history of GD) were identified. Lack of disease awareness, overlooking mild early signs and failure to consider GD as a diagnostic differential were considered major barriers to early diagnosis. CONCLUSION: The signs and co-variables identified in the GED-C initiative as potentially indicative of early GD will help to guide non-specialists and raise their index of suspicion in identifying patients potentially suitable for diagnostic testing for GD.


Assuntos
Consenso , Técnica Delphi , Doença de Gaucher/diagnóstico , Médicos/normas , Diagnóstico Precoce , Doença de Gaucher/fisiopatologia , Humanos
6.
J Inherit Metab Dis ; 41(2): 209-219, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29143201

RESUMO

BACKGROUND: Lysosomal storage diseases (LSDs) are inborn errors of metabolism resulting from 50 different inherited disorders. The increasing availability of treatments and the importance of early intervention have stimulated newborn screening (NBS) to diagnose LSDs and permit early intervention to prevent irreversible impairment or severe disability. We present our experience screening newborns in North East Italy to identify neonates with Mucopolysaccharidosis type I (MPS I) and Pompe, Fabry, and Gaucher diseases. METHODS: Activities of acid ß-glucocerebrosidase (ABG; Gaucher), acid α-glucosidase (GAA; Pompe), acid α-galactosidase (GLA; Fabry), and acid α-L-iduronidase (IDUA; MPS-I) in dried blood spots (DBS) from all newborns during a 17-month period were determined by multiplexed tandem mass spectrometry (MS/MS) using the NeoLSD® assay system. Enzymatic activity cutoff values were determined from 3500 anonymous newborn DBS. In the screening study, samples were retested if the value was below cutoff and a second spot was requested, with referral for confirmatory testing and medical evaluation if a low value was obtained. RESULTS: From September 2015 to January 2017, 44,411 newborns were screened for the four LSDs. We recalled 40 neonates (0.09%) for collection of a second DBS. Low activity was confirmed in 20, who had confirmatory testing. Ten of 20 had pathogenic mutations: two Pompe, two Gaucher, five Fabry, and one MPS-I. The incidences of Pompe and Gaucher diseases were similar (1/22,205), with Fabry disease the most frequent (1/8882) and MPS-I the rarest (1/44411). The combined incidence of the four disorders was 1/4411 births. CONCLUSIONS: Simultaneously determining multiple enzyme activities by MS/MS, with a focus on specific biochemical markers, successfully detected newborns with LSDs. The high incidence of these disorders supports this screening program.


Assuntos
Doenças por Armazenamento dos Lisossomos/diagnóstico , Triagem Neonatal/métodos , Espectrometria de Massas em Tandem , Biomarcadores/sangue , Feminino , Predisposição Genética para Doença , Humanos , Incidência , Recém-Nascido , Itália/epidemiologia , Doenças por Armazenamento dos Lisossomos/sangue , Doenças por Armazenamento dos Lisossomos/epidemiologia , Doenças por Armazenamento dos Lisossomos/genética , Masculino , Fenótipo , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
7.
Am J Hematol ; 93(2): 205-212, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29090476

RESUMO

The Gaucher Outcome Survey (GOS) is an international Gaucher disease (GD) registry established in 2010 for patients with a confirmed GD diagnosis, regardless of GD type or treatment status, designed to evaluate the safety and long-term effectiveness of velaglucerase alfa and other GD-related treatments. As of February 25, 2017, 1209 patients had enrolled, the majority from Israel (44.3%) and the US (31.4%). Median age at GOS entry was 40.4 years, 44.1% were male, and 13.3% had undergone a total splenectomy. Most patients had type 1 GD (91.5%) and were of Ashkenazi Jewish ethnicity (55.8%). N370S/N370S was the most prevalent genotype, accounting for 44.2% of genotype-confirmed individuals (n = 847); however, there was considerable variation between countries. A total of 887 (73.4%) patients had received ≥1 GD-specific treatment at any time, most commonly imiglucerase (n = 587), velaglucerase alfa (n = 507), and alglucerase (n = 102). Hematological and visceral findings at the time of GOS entry were close to normal for most patients, probably a result of previous treatment; however, spleen volume of patients in Israel was almost double that of patients elsewhere (7.2 multiples of normal [MN] vs. 2.7, 2.9 and 4.9 MN in the US, UK and rest of world), which may be explained by a greater disease severity in this cohort. This analysis aimed to provide an overview of GOS and present baseline demographic and disease characteristics of participating patients to help improve the understanding of the natural history of GD and inform the overall management of patients with the disease.


Assuntos
Doença de Gaucher/etnologia , Adulto , Demografia , Feminino , Doença de Gaucher/patologia , Genótipo , Glucosilceramidase/uso terapêutico , Humanos , Israel , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Baço/patologia , Inquéritos e Questionários , Resultado do Tratamento , Reino Unido , Estados Unidos
8.
Mol Ther ; 25(9): 2117-2128, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28629821

RESUMO

Glycogen storage disease type II (GSDII) is a lysosomal disorder caused by the deficient activity of acid alpha-glucosidase (GAA) enzyme, leading to the accumulation of glycogen within the lysosomes. The disease has been classified in infantile and late-onset forms. Most late-onset patients share a splicing mutation c.-32-13T > G in intron 1 of the GAA gene that prevents efficient recognition of exon 2 by the spliceosome. In this study, we have mapped the splicing silencers of GAA exon 2 and developed antisense morpholino oligonucleotides (AMOs) to inhibit those regions and rescue normal splicing in the presence of the c.-32-13T > G mutation. Using a minigene approach and patient fibroblasts, we successfully increased inclusion of exon 2 in the mRNA and GAA enzyme production by targeting a specific silencer with a combination of AMOs. Most importantly, the use of these AMOs in patient myotubes results in a decreased accumulation of glycogen. To our knowledge, this is the only therapeutic approach resulting in a decrease of glycogen accumulation in patient tissues beside enzyme replacement therapy (ERT) and TFEB overexpression. As a result, it may represent a highly novel and promising therapeutic line for GSDII.


Assuntos
Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/metabolismo , Glicogênio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Oligonucleotídeos Antissenso/genética , Reparo Gênico Alvo-Dirigido , Alelos , Linhagem Celular , Éxons , Ordem dos Genes/genética , Vetores Genéticos/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Humanos , Mutação , Oligonucleotídeos Antissenso/uso terapêutico , Ligação Proteica , Splicing de RNA , Fatores de Processamento de RNA/metabolismo , Elementos Silenciadores Transcricionais , Reparo Gênico Alvo-Dirigido/métodos , alfa-Glucosidases/genética
9.
Annu Rev Genomics Hum Genet ; 15: 173-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25184529

RESUMO

Cholesterol plays a key role in many cellular processes, and is generated by cells through de novo biosynthesis or acquired from exogenous sources through the uptake of low-density lipoproteins. Cholesterol biosynthesis is a complex, multienzyme-catalyzed pathway involving a series of sequentially acting enzymes. Inherited defects in genes encoding cholesterol biosynthetic enzymes or other regulators of cholesterol homeostasis result in severe metabolic diseases, many of which are rare in the general population and currently without effective therapy. Historically, these diseases have been viewed as discrete disorders, each with its own genetic cause and distinct pathogenic cascades that lead to its specific clinical features. However, studies have recently shown that three of these diseases have an unanticipated mechanistic convergence. This surprising finding is not only shedding light on details of cellular cholesterol homeostasis but also suggesting novel approaches to therapy.


Assuntos
Colesterol/metabolismo , Homeostase , Lipoproteínas LDL/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Fenótipo de Síndrome de Antley-Bixler/genética , Fenótipo de Síndrome de Antley-Bixler/patologia , Colesterol/biossíntese , Colesterol/genética , Condrodisplasia Punctata/genética , Condrodisplasia Punctata/patologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Eritrodermia Ictiosiforme Congênita/genética , Eritrodermia Ictiosiforme Congênita/patologia , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/patologia , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/patologia , Lipoproteínas LDL/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Erros Inatos do Metabolismo de Esteroides/genética , Erros Inatos do Metabolismo de Esteroides/patologia
10.
Mol Genet Metab ; 122(3): 122-129, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28847676

RESUMO

Gaucher disease (GD) is a rare hereditary disorder caused by a deficiency of the lysosomal enzyme ß-glucocerebrosidase. Diagnosis is challenging owing to a wide variability in clinical manifestations and severity of symptoms. Many patients may experience marked delays in obtaining a definitive diagnosis. The two surveys reported herein aimed to explore the patient journey to diagnosis of GD from the perspectives of Gaucher expert physicians and patients. Findings from the surveys revealed that many patients experienced diagnostic delays and misdiagnoses, with nearly 1 in 6 patients stating that they were not diagnosed with GD for 7years or more after first consulting a doctor. Physicians and patients both reported multiple referrals to different specialties before a diagnosis of GD was obtained, with primary care, haematology/haematology-oncology and paediatrics the main specialties to which patients first presented. Splenomegaly, thrombocytopenia, anaemia and bone pain were reported as the most common medical problems at first presentation in both surveys. These findings support a clear need for straightforward and easy-to-follow guidance designed to assist non-specialists to identify earlier patients who are at risk of GD.


Assuntos
Doença de Gaucher/diagnóstico , Pacientes/psicologia , Médicos/psicologia , Criança , Diagnóstico Tardio , Humanos , Masculino , Medicina/estatística & dados numéricos , Fatores de Risco , Inquéritos e Questionários
11.
Mov Disord ; 32(10): 1423-1431, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28843015

RESUMO

BACKGROUND: Reduced ß-glucocerebrosidase activity was observed in postmortem brains of both GBA1 mutation carrier and noncarrier Parkinson's disease patients, suggesting that lower ß-glucocerebrosidase activity is a key feature in the pathogenesis of PD. The objectives of this study were to confirm whether there is reduced ß-glucocerebrosidase activity in the CSF of GBA1 mutation carrier and noncarrier PD patients and verify if other lysosomal enzymes show altered activity in the CSF. METHODS: CSF ß-glucocerebrosidase, cathepsin D, and ß-hexosaminidase activities were measured in 79 PD and 61 healthy controls from the BioFIND cohort. The whole GBA1 gene was sequenced. RESULTS: Enzyme activities were normalized according to CSF protein content (specific activity). ß-glucocerebrosidase specific activity was significantly decreased in PD versus controls (-28%, P < 0.001). GBA1 mutations were found in 10 of 79 PD patients (12.7%) and 3 of 61 controls (4.9%). GBA1 mutation carrier PD patients showed significantly lower ß-glucocerebrosidase specific activity versus noncarriers. ß-glucocerebrosidase specific activity was also decreased in noncarrier PD patients versus controls (-25%, P < 0.001). Cathepsin D specific activity was lower in PD versus controls (-21%, P < 0.001). ß-Hexosaminidase showed a similar trend. ß-Glucocerebrosidase specific activity fairly discriminated PD from controls (area under the curve, 0.72; sensitivity, 0.67; specificity, 0.77). A combination of ß-glucocerebrosidase, cathepsin D, and ß-hexosaminidase improved diagnostic accuracy (area under the curve, 0.77; sensitivity, 0.71; specificity, 0.85). Lower ß-glucocerebrosidase and ß-hexosaminidase specific activities were associated with worse cognitive performance. CONCLUSIONS: CSF ß-glucocerebrosidase activity is reduced in PD patients independent of their GBA1 mutation carrier status. Cathepsin D and ß-hexosaminidase were also decreased. The possible link between altered CSF lysosomal enzyme activities and cognitive decline deserves further investigation. © 2017 International Parkinson and Movement Disorder Society.


Assuntos
Glucosilceramidase/líquido cefalorraquidiano , Doença de Parkinson/líquido cefalorraquidiano , Idoso , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Catepsina D/líquido cefalorraquidiano , Feminino , Glucosilceramidase/genética , Humanos , Lisossomos/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação/genética , Doença de Parkinson/genética , Fragmentos de Peptídeos/líquido cefalorraquidiano , Curva ROC , Estatística como Assunto , alfa-Sinucleína/líquido cefalorraquidiano , beta-N-Acetil-Hexosaminidases/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
12.
Hum Mutat ; 37(2): 139-47, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26499107

RESUMO

Niemann-Pick Types A and B (NPA/B) diseases are autosomal recessive lysosomal storage disorders caused by the deficient activity of acid sphingomyelinase (ASM) because of the mutations in the SMPD1 gene. Here, we provide a comprehensive updated review of already reported and newly identified SMPD1 variants. Among them, 185 have been found in NPA/B patients. Disease-causing variants are equally distributed along the SMPD1 gene; most of them are missense (65.4%) or frameshift (19%) mutations. The most frequently reported mutation worldwide is the p.R610del, clearly associated with an attenuated NP disease type B phenotype. The available information about the impact of 52 SMPD1 variants on ASM mRNA and/or enzymatic activity has been collected and whenever possible, phenotype/genotype correlations were established. In addition, we created a locus-specific database easily accessible at http://www.inpdr.org/genes that catalogs the 417 SMPD1 variants reported to date and provides data on their in silico predicted effects on ASM protein function or mRNA splicing. The information reviewed in this article, providing new insights into the genotype/phenotype correlation, is extremely valuable to facilitate diagnosis and genetic counseling of families affected by NPA/B.


Assuntos
Bases de Dados Genéticas , Mutação , Doença de Niemann-Pick Tipo A/genética , Doença de Niemann-Pick Tipo B/genética , RNA Mensageiro/genética , Esfingomielina Fosfodiesterase/genética , Éxons , Expressão Gênica , Genes Recessivos , Estudos de Associação Genética , Genótipo , Humanos , Íntrons , Doença de Niemann-Pick Tipo A/diagnóstico , Doença de Niemann-Pick Tipo A/patologia , Doença de Niemann-Pick Tipo B/diagnóstico , Doença de Niemann-Pick Tipo B/patologia , Fases de Leitura Aberta , Fenótipo , Splicing de RNA
13.
Mol Genet Metab ; 118(3): 206-213, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27198631

RESUMO

BACKGROUND: Acid sphingomyelinase deficiency (ASMD), [Niemann-Pick Disease Types A and B (NPD A and B)], is an inherited metabolic disorder resulting from deficiency of the lysosomal enzyme acid sphingomyelinase. Accumulation of sphingomyelin in hepatocytes, reticuloendothelial cells, and in some cases neurons, results in a progressive multisystem disease that encompasses a broad clinical spectrum of neurological and visceral involvement, including: infantile neurovisceral ASMD (NPD A) that is uniformly fatal by 3years of age; chronic neurovisceral ASMD (intermediate NPD A/B; NPD B variant) that has later symptom onset and slower neurological and visceral disease progression; and chronic visceral ASMD (NPD B) that lacks neurological symptoms but has significant disease-related morbidities in multiple organ systems. The purpose of this study was to characterize disease-related morbidities and causes of death in patients with the chronic visceral and chronic neurovisceral forms of ASMD. METHODS: Data for 85 patients who had died or received liver transplant were collected by treating physicians (n=27), or abstracted from previously published case studies (n=58). Ages at symptom onset, diagnosis, and death; cause of death; organ involvement, and morbidity were analyzed. RESULTS: Common disease-related morbidities included splenomegaly (96.6%), hepatomegaly (91.4%), liver dysfunction (82.6%), and pulmonary disease (75.0%). The overall leading causes of death were respiratory failure and liver failure (27.7% each) irrespective of age. For patients with chronic neurovisceral ASMD (31.8%), progression of neurodegenerative disease was a leading cause of death along with respiratory disease (both 23.1%) and liver disease (19.2%). Patients with chronic neurovisceral disease died at younger ages than those with chronic visceral disease (median age at death 8 vs. 23.5years). CONCLUSIONS: The analysis emphasizes that treatment goals for patients with chronic visceral and chronic neurovisceral ASMD should include reducing splenomegaly and improving liver function and respiratory status, with the ultimate goal of decreasing serious morbidity and mortality.


Assuntos
Doença de Niemann-Pick Tipo A/mortalidade , Doença de Niemann-Pick Tipo B/mortalidade , Adolescente , Adulto , Idade de Início , Idoso , Causas de Morte , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
14.
FASEB J ; 29(9): 3839-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26018676

RESUMO

Acid ß-glucosidase (GCase), the enzyme deficient in Gaucher disease (GD), is transported to lysosomes by the lysosomal integral membrane protein (LIMP)-2. In humans, LIMP-2 deficiency leads to action myoclonus-renal failure (AMRF) syndrome. GD and AMRF syndrome share some clinical features. However, they are different from clinical and biochemical points of view, suggesting that the role of LIMP-2 in the targeting of GCase would be different in different tissues. Besides, the role of LIMP-2 in the uptake and trafficking of the human recombinant (hr)GCase used in the treatment of GD is unknown. Thus, we compared GCase activity and intracellular localization in immortalized lymphocytes, fibroblasts, and a neuronal model derived from multipotent adult stem cells, from a patient with AMRF syndrome, patients with GD, and control subjects. In fibroblasts and neuronlike cells, GCase targeting to the lysosomes is completely dependent on LIMP-2, whereas in blood cells, GCase is partially targeted to lysosomes by a LIMP-2-independent mechanism. Although hrGCase cellular uptake is independent of LIMP-2, its trafficking to the lysosomes is mediated by this receptor. These data provide new insights into the mechanisms involved in the intracellular trafficking of GCase and in the pathogeneses of GD and AMRF syndrome.


Assuntos
Células-Tronco Adultas/metabolismo , Fibroblastos/metabolismo , Glucosilceramidase , Linfócitos/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Células-Tronco Multipotentes/metabolismo , Receptores Depuradores/metabolismo , Adulto , Células-Tronco Adultas/patologia , Fibroblastos/patologia , Glucosilceramidase/farmacocinética , Glucosilceramidase/farmacologia , Humanos , Linfócitos/patologia , Proteínas de Membrana Lisossomal/genética , Lisossomos/metabolismo , Lisossomos/patologia , Células-Tronco Multipotentes/patologia , Epilepsias Mioclônicas Progressivas/tratamento farmacológico , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas Progressivas/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Receptores Depuradores/genética , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia
15.
Nucleic Acids Res ; 42(2): 1291-302, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24150945

RESUMO

Glycogen storage disease type II is a lysosomal storage disorder due to mutations of the GAA gene, which causes lysosomal alpha-glucosidase deficiency. Clinically, glycogen storage disease type II has been classified in infantile and late-onset forms. Most late-onset patients share the leaky splicing mutation c.-32-13T>G. To date, the mechanism by which the c.-32-13T>G mutation affects the GAA mRNA splicing is not fully known. In this study, we demonstrate that the c.-32-13T>G mutation abrogates the binding of the splicing factor U2AF65 to the polypyrimidine tract of exon 2 and that several splicing factors affect exon 2 inclusion, although the only factor capable of acting in the c.-32-13 T>G context is the SR protein family member, SRSF4 (SRp75). Most importantly, a preliminary screening using small molecules described to be able to affect splicing profiles, showed that resveratrol treatment resulted in a significant increase of normal spliced GAA mRNA, GAA protein content and activity in cells transfected with a mutant minigene and in fibroblasts from patients carrying the c-32-13T>G mutation. In conclusion, this work provides an in-depth functional characterization of the c.-32-13T>G mutation and, most importantly, an in vitro proof of principle for the use of small molecules to rescue normal splicing of c.-32-13T>G mutant alleles.


Assuntos
Doença de Depósito de Glicogênio Tipo II/genética , Mutação , Splicing de RNA , alfa-Glucosidases/genética , Células Cultivadas , Éxons , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina , Fator de Processamento U2AF , alfa-Glucosidases/metabolismo
16.
Pharmacoepidemiol Drug Saf ; 24(3): 329-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25656910

RESUMO

BACKGROUND: Following approval in the EU in 2002 and the USA in 2003, an Intensive Safety Surveillance Scheme (IS(3) ) was initiated to educate prescribers on the appropriate use of miglustat for the treatment of type I Gaucher disease (GD1), and to actively solicit safety-relevant information. This report summarises data from all patients enrolled in IS(3) between its initiation in 2003 and its closure in October 2012. METHODS: The IS(3) was a prospective observational drug registry with a secure internet-based data capture system. All patients receiving miglustat at participating sites received standard medical care according to routine medical practice. Data on patient and disease characteristics were collected at patient enrolment, subsequent follow-up visits and treatment discontinuation (if applicable). Data were summarised using descriptive statistics. RESULTS: During the 9 years of IS(3) , 407 patients were enrolled at 111 sites across 15 European countries. Approximately half (n = 202) had GD1, and half had other diseases (mainly Niemann-Pick disease type C (NP-C), for which miglustat was approved in Europe in 2009). In total, 368 patients had data from at least one follow-up visit, 192 of whom had GD1. IS(3) provided data from 798 patient-years exposure to miglustat. Safety-relevant data were consistent with earlier published 5-year findings from IS(3) , the safety profile reported for miglustat in GD1 clinical trials and other published information on GD1 manifestations. CONCLUSIONS: Overall, the results of this long-term safety surveillance programme were in line with the well-known, documented safety profile of miglustat.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Inibidores Enzimáticos/uso terapêutico , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/epidemiologia , Vigilância de Produtos Comercializados/métodos , 1-Desoxinojirimicina/efeitos adversos , 1-Desoxinojirimicina/uso terapêutico , Inibidores Enzimáticos/efeitos adversos , Feminino , Seguimentos , Humanos , Masculino , Vigilância de Produtos Comercializados/tendências , Estudos Prospectivos , Resultado do Tratamento
17.
Cochrane Database Syst Rev ; (3): CD010324, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25812601

RESUMO

BACKGROUND: Gaucher disease, a rare disorder, is caused by inherited deficiency of the enzyme glucocerebrosidase. It is unique among the ultra-orphan disorders in that four treatments are currently approved by various regulatory authorities for use in routine clinical practice. Hitherto, because of the relatively few people affected worldwide, many of whom started therapy during a prolonged period when there were essentially no alternatives to imiglucerase, these treatments have not been systematically evaluated in studies such as randomized controlled trials now considered necessary to generate the highest level of clinical evidence. OBJECTIVES: To summarize all available randomized controlled study data on the efficacy and safety of enzyme replacement therapies and substrate reduction therapy for treating Gaucher disease. SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Inborn Errors of Metabolism Trials Register. Additional searches were conducted on ClinicalTrials.gov for any ongoing studies with potential interim results, and through PubMed. We also searched the reference lists of relevant articles and reviews.Date of last search: 07 August 2014. SELECTION CRITERIA: All randomized and quasi-randomized controlled studies (including open-label studies and cross-over studies) assessing enzyme replacement therapy or substrate reduction therapy, or both, in all types of Gaucher disease were included. DATA COLLECTION AND ANALYSIS: Two authors independently assessed the risk of bias in the included studies, and extracted relevant data. MAIN RESULTS: Of the 488 studies retrieved by the electronic searches, eight met the inclusion criteria and were analysed (300 participants). Response parameters were restricted to haemoglobin concentration, platelet count, spleen and liver volume and serum biomarkers (chitotriosidase and CCL18). Only one publication reported a 'low risk of bias' score in all parameters assessed, and all studies included were randomized.Four studies reported the responses to enzyme replacement therapy of previously untreated individuals with type 1 Gaucher disease. Two studies investigated maintenance enzyme replacement therapy in people with stable type 1 Gaucher disease previously treated for at least two years. One study compared substrate reduction therapy, enzyme replacement therapy and a combination thereof as maintenance therapy in people with type 1 Gaucher disease previously treated with enzyme replacement therapy. One study examined substrate reduction therapy in people with chronic neuronopathic (type 3) Gaucher disease who continued to receive enzyme replacement therapy.Treatment-naïve participants had similar increases in haemoglobin when comparing those receiving imiglucerase or alglucerase at 60 units/kg, imiglucerase or velaglucerase alfa at 60 U/kg, taliglucerase alfa at 30 units/kg or 60 units/kg, and velaglucerase alfa at 45 units/g or 60 units/kg. For platelet count response in participants with intact spleens, a benefit for imiglucerase over velaglucerase alfa at 60 units/kg was observed, mean difference -79.87 (95% confidence interval -137.57 to -22.17). There were no other significant differences in platelet count response when comparing different doses of velaglucerase alfa and of taliglucerase alfa, and when comparing imiglucerase to alglucerase. Spleen and liver volume reductions were not significantly different in any enzyme replacement therapy product or dose comparison study. Although a dose effect on serum biomarkers was not seen after nine months, a significantly greater reduction with higher dose was reported after 12 months in the velaglucerase study, mean difference 16.70 (95% confidence intervaI 1.51 to 31.89). In the two enzyme replacement therapy maintenance studies comparing infusions every two weeks and every four weeks, there were no significant differences in haemoglobin concentration, platelet count, and spleen and liver volumes over a 6 to 12 month period when participants were treated with the same cumulative dose.A total of 25 serious adverse events were reported, nearly all deemed unrelated to treatment.There are, as yet, no randomized trials of substrate reduction therapy in treatment-naïve patients that can be evaluated. Miglustat monotherapy appeared as effective as continued enzyme replacement therapy for maintenance of hematological, organ and biomarker responses in people with type 1 Gaucher disease previously treated with imiglucerase for at least two years. In those with neuronopathic Gaucher disease, no significant improvements in haemoglobin concentration, platelet count or organ volumes occurred when enzyme replacement therapy was augmented with miglustat.One randomized controlled study assessing substrate reduction therapy was published immediately prior to producing the final version of this review, and this, along with a further ongoing study (expected to be published in the near future), will be assessed for eligibility in a future update of the review. AUTHORS' CONCLUSIONS: The results reflect the limitations of analysing evidence restricted to prospective randomized controlled trials, especially when dealing with chronic rare diseases. This analysis suggests that, during the first year of treatment, different recombinant glucocerebrosidases are bio-similar and non-inferior in safety and efficacy for surrogate biological response parameters. Enzyme replacement therapy given at 30 to 45 units/kg body weight every two to four weeks was generally as effective as the 60 unit/kg dose for the assessed clinical outcomes. The analysis emphasise the need to determine whether it is realistic to carry out multi-decade prospective clinical trials for rare diseases such as type 1 Gaucher disease. With large treatment effects on the classical manifestations of the disorder, therapeutic investigations in Gaucher disease mandate innovative trial designs and methodology to secure decisive data concerning long-term efficacy and safety - with the realization that knowledge about disease-modifying actions that are sustained are of crucial importance to people with this chronic condition.


Assuntos
Terapia de Reposição de Enzimas/métodos , Doença de Gaucher/tratamento farmacológico , 1-Desoxinojirimicina/efeitos adversos , 1-Desoxinojirimicina/análogos & derivados , Inibidores Enzimáticos/efeitos adversos , Doença de Gaucher/sangue , Glucosilceramidase/uso terapêutico , Hemoglobina A/metabolismo , Hepatomegalia/tratamento farmacológico , Humanos , Contagem de Plaquetas , Ensaios Clínicos Controlados Aleatórios como Assunto , Esplenomegalia/tratamento farmacológico , Especificidade por Substrato
18.
Mol Genet Metab ; 113(3): 213-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25127542

RESUMO

BACKGROUND: The chronic neuropathic form of Gaucher disease (GD3) is characterised by hepatosplenomegaly, anaemia, thrombocytopenia, bone alterations and central neurological involvement. Enzyme replacement therapy (ERT) has been demonstrated to be effective in non neuropathic Gaucher disease, but long term results in patients with GD3 are still limited and contrasting. A possible role of genotype in determining the response to ERT has been hypothesised. PATIENTS AND METHODS: All patients affected by GD3, treated with ERT, and followed-up in 4 different Italian centres (Udine, Catanzaro, Sassari and Florence) were included. Data on clinical conditions, laboratory values, neurological and neuropsychological examinations, radiological and electrophysiological features were collected retrospectively from clinical records. RESULTS: Ten patients (6 females, 4 males) with four different genotypes (L444P/L444P, L444P/F231I, P159T/unknown, C.115+1G>A/N188S) were identified. They received ERT infusions from 3 to 21years. Haematological parameters and organomegaly improved/normalised in all patients. Three patients showed severe progressive skeletal deformities. 6/10 patients were neurologically asymptomatic when they started ERT for systemic symptoms. During the follow-up, 2/6 developed an important central nervous system disease; 2/6 developed mild central symptoms; and 2/6 did not show any neurological symptom after 5, and 20years of treatment respectively, despite the presence of epileptiform abnormalities at the electroencephalogram. Overall, neurological involvement worsened over time in 6/10 patients, 3 of whom developed progressive myoclonic encephalopathy and died. CONCLUSIONS: ERT improved the systemic manifestations in patients with GD3, but was not able to counteract the progression of neurological symptoms in the long term.


Assuntos
Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/uso terapêutico , Adolescente , Adulto , Terapia de Reposição de Enzimas , Feminino , Seguimentos , Doença de Gaucher/genética , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Estudos Retrospectivos , Adulto Jovem
20.
Mov Disord ; 29(8): 1019-27, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24436092

RESUMO

To assess the discriminating power of multiple cerebrospinal fluid (CSF) biomarkers for Parkinson's disease (PD), we measured several proteins playing an important role in the disease pathogenesis. The activities of ß-glucocerebrosidase and other lysosomal enzymes, together with total and oligomeric α-synuclein, and total and phosphorylated tau, were thus assessed in CSF of 71 PD patients and compared to 45 neurological controls. Activities of ß-glucocerebrosidase, ß-mannosidase, ß-hexosaminidase, and ß-galactosidase were measured with established enzymatic assays, while α-synuclein and tau biomarkers were evaluated with immunoassays. A subset of PD patients (n = 44) was also screened for mutations in the ß-glucocerebrosidase-encoding gene (GBA1). In the PD group, ß-glucocerebrosidase activity was reduced (P < 0.05) and patients at earlier stages showed lower enzymatic activity (P < 0.05); conversely, ß-hexosaminidase activity was significantly increased (P < 0.05). Eight PD patients (18%) presented GBA1 sequence variations; 3 of them were heterozygous for the N370S mutation. Levels of total α-synuclein were significantly reduced (P < 0.05) in PD, in contrast to increased levels of α-synuclein oligomers, with a higher oligomeric/total α-synuclein ratio in PD patients when compared with controls (P < 0.001). A combination of ß-glucocerebrosidase activity, oligomeric/total α-synuclein ratio, and age gave the best performance in discriminating PD from neurological controls (sensitivity 82%; specificity 71%, area under the receiver operating characteristic curve = 0.87). These results demonstrate the possibility of detecting lysosomal dysfunction in CSF and further support the need to combine different biomarkers for improving the diagnostic accuracy of PD.


Assuntos
Glicosídeo Hidrolases/líquido cefalorraquidiano , Doença de Parkinson/líquido cefalorraquidiano , alfa-Sinucleína/líquido cefalorraquidiano , Adulto , Idoso , Feminino , Genótipo , Glucosilceramidase/líquido cefalorraquidiano , Glucosilceramidase/genética , Humanos , Imunoensaio , Masculino , Pessoa de Meia-Idade , Mutação/genética , Doença de Parkinson/genética , Estudos Prospectivos , Proteínas tau/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA