Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(7): e0046223, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37310224

RESUMO

HIV-1 integrase-LEDGF allosteric inhibitors (INLAIs) share the binding site on the viral protein with the host factor LEDGF/p75. These small molecules act as molecular glues promoting hyper-multimerization of HIV-1 IN protein to severely perturb maturation of viral particles. Herein, we describe a new series of INLAIs based on a benzene scaffold that display antiviral activity in the single digit nanomolar range. Akin to other compounds of this class, the INLAIs predominantly inhibit the late stages of HIV-1 replication. A series of high-resolution crystal structures revealed how these small molecules engage the catalytic core and the C-terminal domains of HIV-1 IN. No antagonism was observed between our lead INLAI compound BDM-2 and a panel of 16 clinical antiretrovirals. Moreover, we show that compounds retained high antiviral activity against HIV-1 variants resistant to IN strand transfer inhibitors and other classes of antiretroviral drugs. The virologic profile of BDM-2 and the recently completed single ascending dose phase I trial (ClinicalTrials.gov identifier: NCT03634085) warrant further clinical investigation for use in combination with other antiretroviral drugs. Moreover, our results suggest routes for further improvement of this emerging drug class.


Assuntos
Infecções por HIV , Inibidores de Integrase de HIV , Integrase de HIV , Humanos , Replicação Viral , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/uso terapêutico , Antivirais/farmacologia , Integrase de HIV/metabolismo , Infecções por HIV/tratamento farmacológico , Regulação Alostérica
2.
J Biol Chem ; 293(16): 6172-6186, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507092

RESUMO

Recently, a new class of HIV-1 integrase (IN) inhibitors with a dual mode of action, called IN-LEDGF/p75 allosteric inhibitors (INLAIs), was described. Designed to interfere with the IN-LEDGF/p75 interaction during viral integration, unexpectedly, their major impact was on virus maturation. This activity has been linked to induction of aberrant IN multimerization, whereas inhibition of the IN-LEDGF/p75 interaction accounts for weaker antiretroviral effect at integration. Because these dual activities result from INLAI binding to IN at a single binding site, we expected that these activities co-evolved together, driven by the affinity for IN. Using an original INLAI, MUT-A, and its activity on an Ala-125 (A125) IN variant, we found that these two activities on A125-IN can be fully dissociated: MUT-A-induced IN multimerization and the formation of eccentric condensates in viral particles, which are responsible for inhibition of virus maturation, were lost, whereas inhibition of the IN-LEDGF/p75 interaction and consequently integration was fully retained. Hence, the mere binding of INLAI to A125 IN is insufficient to promote the conformational changes of IN required for aberrant multimerization. By analyzing the X-ray structures of MUT-A bound to the IN catalytic core domain (CCD) with or without the Ala-125 polymorphism, we discovered that the loss of IN multimerization is due to stabilization of the A125-IN variant CCD dimer, highlighting the importance of the CCD dimerization energy for IN multimerization. Our study reveals that affinity for the LEDGF/p75-binding pocket is not sufficient to induce INLAI-dependent IN multimerization and the associated inhibition of viral maturation.


Assuntos
Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/efeitos dos fármacos , HIV-1/fisiologia , Montagem de Vírus/efeitos dos fármacos , Integração Viral/efeitos dos fármacos , Regulação Alostérica , Sítios de Ligação , Linhagem Celular , Inibidores de Integrase de HIV/química , Humanos , Estrutura Molecular , Piridinas/química , Piridinas/farmacologia , Relação Estrutura-Atividade , Tiofenos/química , Tiofenos/farmacologia
3.
Retrovirology ; 14(1): 50, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121950

RESUMO

BACKGROUND: HIV-1 Integrase (IN) interacts with the cellular co-factor LEDGF/p75 and tethers the HIV preintegration complex to the host genome enabling integration. Recently a new class of IN inhibitors was described, the IN-LEDGF allosteric inhibitors (INLAIs). Designed to interfere with the IN-LEDGF interaction during integration, the major impact of these inhibitors was surprisingly found on virus maturation, causing a reverse transcription defect in target cells. RESULTS: Here we describe the MUT-A compound as a genuine INLAI with an original chemical structure based on a new type of scaffold, a thiophene ring. MUT-A has all characteristics of INLAI compounds such as inhibition of IN-LEDGF/p75 interaction, IN multimerization, dual antiretroviral (ARV) activities, normal packaging of genomic viral RNA and complete Gag protein maturation. MUT-A has more potent ARV activity compared to other INLAIs previously reported, but similar profile of resistance mutations and absence of ARV activity on SIV. HIV-1 virions produced in the presence of MUT-A were non-infectious with the formation of eccentric condensates outside of the core. In studying the immunoreactivity of these non-infectious virions, we found that inactivated HIV-1 particles were captured by anti-HIV-specific neutralizing and non-neutralizing antibodies (b12, 2G12, PGT121, 4D4, 10-1074, 10E8, VRC01) with efficiencies comparable to non-treated virus. Autologous CD4+ T lymphocyte proliferation and cytokine induction by monocyte-derived dendritic cells (MDDC) pulsed either with MUT-A-inactivated HIV or non-treated HIV were also comparable. CONCLUSIONS: Although strongly defective in infectivity, HIV-1 virions produced in the presence of the MUT-A INLAI have a normal protein and genomic RNA content as well as B and T cell immunoreactivities comparable to non-treated HIV-1. These inactivated viruses might form an attractive new approach in vaccine research in an attempt to study if this new type of immunogen could elicit an immune response against HIV-1 in animal models.


Assuntos
Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Piridinas/farmacologia , Tiofenos/farmacologia , Linhagem Celular , Anticorpos Anti-HIV/imunologia , Inibidores de Integrase de HIV/química , HIV-1/imunologia , Humanos , Piridinas/química , Tiofenos/química , Montagem de Vírus/efeitos dos fármacos , Integração Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
4.
Retrovirology ; 10: 144, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24261564

RESUMO

BACKGROUND: LEDGF/p75 (LEDGF) is the main cellular cofactor of HIV-1 integrase (IN). It acts as a tethering factor for IN, and targets the integration of HIV in actively transcribed gene regions of chromatin. A recently developed class of IN allosteric inhibitors can inhibit the LEDGF-IN interaction. RESULTS: We describe a new series of IN-LEDGF allosteric inhibitors, the most active of which is Mut101. We determined the crystal structure of Mut101 in complex with IN and showed that the compound binds to the LEDGF-binding pocket, promoting conformational changes of IN which explain at the atomic level the allosteric effect of the IN/LEDGF interaction inhibitor on IN functions. In vitro, Mut101 inhibited both IN-LEDGF interaction and IN strand transfer activity while enhancing IN-IN interaction. Time of addition experiments indicated that Mut101 behaved as an integration inhibitor. Mut101 was fully active on HIV-1 mutants resistant to INSTIs and other classes of anti-HIV drugs, indicative that this compound has a new mode of action. However, we found that Mut101 also displayed a more potent antiretroviral activity at a post-integration step. Infectivity of viral particles produced in presence of Mut101 was severely decreased. This latter effect also required the binding of the compound to the LEDGF-binding pocket. CONCLUSION: Mut101 has dual anti-HIV-1 activity, at integration and post-integration steps of the viral replication cycle, by binding to a unique target on IN (the LEDGF-binding pocket). The post-integration block of HIV-1 replication in virus-producer cells is the mechanism by which Mut101 is most active as an antiretroviral. To explain this difference between Mut101 antiretroviral activity at integration and post-integration stages, we propose the following model: LEDGF is a nuclear, chromatin-bound protein that is absent in the cytoplasm. Therefore, LEDGF can outcompete compound binding to IN in the nucleus of target cells lowering its antiretroviral activity at integration, but not in the cytoplasm where post-integration production of infectious viral particles takes place.


Assuntos
Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Integração Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Cristalografia por Raios X , Integrase de HIV/química , Inibidores de Integrase de HIV/química , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Ligação Proteica , Conformação Proteica
5.
EMBO J ; 28(7): 980-91, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19229293

RESUMO

Integration of the human immunodeficiency virus (HIV-1) cDNA into the human genome is catalysed by integrase. Several studies have shown the importance of the interaction of cellular cofactors with integrase for viral integration and infectivity. In this study, we produced a stable and functional complex between the wild-type full-length integrase (IN) and the cellular cofactor LEDGF/p75 that shows enhanced in vitro integration activity compared with the integrase alone. Mass spectrometry analysis and the fitting of known atomic structures in cryo negatively stain electron microscopy (EM) maps revealed that the functional unit comprises two asymmetric integrase dimers and two LEDGF/p75 molecules. In the presence of DNA, EM revealed the DNA-binding sites and indicated that, in each asymmetric dimer, one integrase molecule performs the catalytic reaction, whereas the other one positions the viral DNA in the active site of the opposite dimer. The positions of the target and viral DNAs for the 3' processing and integration reaction shed light on the integration mechanism, a process with wide implications for the understanding of viral-induced pathologies.


Assuntos
DNA Viral/química , Genoma Humano , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Integração Viral , Microscopia Crioeletrônica , DNA Viral/genética , DNA Viral/metabolismo , Integrase de HIV/química , Integrase de HIV/metabolismo , Humanos , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica , Replicação Viral
6.
Curr Biol ; 18(16): 1192-202, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18722123

RESUMO

BACKGROUND: The human immunodeficiency virus type 1 (HIV-1) and other lentiviruses have the capacity to infect nondividing cells like macrophages. This requires import of the preintegration complex (PIC) through the nuclear pore. Although many cellular and viral determinants have been proposed, the mechanism leading to nuclear import is not yet understood. RESULTS: Using yeast two-hybrid and pull-down, we identified and validated transportin-SR2 (TRN-SR2) as a bona fide binding partner of HIV-1 integrase. We confirmed the biological relevance of this interaction by RNAi. Depletion of TRN-SR2 interfered with the replication of HIV-1 and HIV-2 but not MoMLV in HeLaP4 cells. Knockdown of TRN-SR2 in primary macrophages likewise interfered with HIV-1 replication. Using Q-PCR, we pinpoint this block in replication to the early steps of the viral lifecycle. A reduction in 2-LTR formation suggests a block in PIC nuclear import upon siRNA-mediated knockdown. Different lines of evidence clearly proved that the late steps of viral replication are not affected. In an in vivo nuclear-import assay using labeled HIV-1 particles, the defect in nuclear import after depletion of TRN-SR2 was directly visualized. In comparison with control cell lines, the great majority of siRNA-treated cells did not contain any PIC in the nucleus. CONCLUSION: Our data clearly demonstrate that TRN-SR2 is the nuclear-import factor of HIV.


Assuntos
Núcleo Celular/virologia , HIV-1/metabolismo , Replicação Viral , beta Carioferinas/metabolismo , Núcleo Celular/metabolismo , Infecções por HIV/virologia , Integrase de HIV/metabolismo , HIV-1/fisiologia , Técnicas do Sistema de Duplo-Híbrido , beta Carioferinas/genética
7.
Retrovirology ; 8: 104, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22176773

RESUMO

BACKGROUND: Integration of human immunodeficiency virus type 1 (HIV-1) into a host cell chromosome is an essential step under the control of the viral integrase (IN). Although this enzyme is necessary and sufficient to catalyze the integration reaction in vitro, cellular cofactors are involved in the process in vivo. The chromatin-associated factor LEDGF/p75 interacts with IN and promotes integration to transcription units of the host genome. HIV-1 IN also binds the karyopherin TNPO3, however the significance of this interaction during viral replication remains to be explored. RESULTS: Here we present a functional analysis of IN mutants impaired for LEDGF/p75 and TNPO3 interaction. Among them, IN W131A and IN Q168L, that were previously identified to be deficient for LEDGF/p75 interaction, were also partially impaired for TNPO3 binding. We observed that mutations abolishing IN ability to form tetramers resulted in a severe reduction in LEDGF/p75 binding. In sharp contrast, no correlation could be found between the ability of IN to multimerize and TNPO3 interaction. Most of the mutant viruses were essentially impaired for the integration step whereas the amount of 2-LTR circles, reflecting the nuclear import of the viral DNA, was not significantly affected. CONCLUSION: Our functional analysis of HIV-1 IN mutants reveals distinct structural basis for TNPO3 interaction and suggests that the interaction between IN and TNPO3 is not a major determinant of nuclear import but could take place at a nuclear step prior to integration.


Assuntos
DNA Complementar/metabolismo , Integrase de HIV/metabolismo , HIV-1/enzimologia , Mutação , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , DNA Complementar/genética , DNA Viral/genética , DNA Viral/metabolismo , Ativação Enzimática , Células HEK293 , Integrase de HIV/genética , HIV-1/genética , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica , Transfecção , Integração Viral , Replicação Viral , beta Carioferinas/genética
8.
PLoS Pathog ; 5(5): e1000450, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19478868

RESUMO

The interferon-induced transmembrane protein BST-2/CD317 (tetherin) restricts the release of diverse enveloped viruses from infected cells. The HIV-1 accessory protein Vpu antagonizes this restriction by an unknown mechanism that likely involves the down-regulation of BST-2 from the cell surface. Here, we show that the optimal removal of BST-2 from the plasma membrane by Vpu requires the cellular protein beta-TrCP, a substrate adaptor for a multi-subunit SCF E3 ubiquitin ligase complex and a known Vpu-interacting protein. beta-TrCP is also required for the optimal enhancement of virion-release by Vpu. Mutations in the DSGxxS beta-TrCP binding-motif of Vpu impair both the down-regulation of BST-2 and the enhancement of virion-release. Such mutations also confer dominant-negative activity, consistent with a model in which Vpu links BST-2 to beta-TrCP. Optimal down-regulation of BST-2 from the cell surface by Vpu also requires the endocytic clathrin adaptor AP-2, although the rate of endocytosis is not increased; these data suggest that Vpu induces post-endocytic membrane trafficking events whose net effect is the removal of BST-2 from the cell surface. In addition to its marked effect on cell-surface levels, Vpu modestly decreases the total cellular levels of BST-2. The decreases in cell-surface and intracellular BST-2 are inhibited by bafilomycin A1, an inhibitor of endosomal acidification; these data suggest that Vpu induces late endosomal targeting and partial degradation of BST-2 in lysosomes. The Vpu-mediated decrease in surface expression is associated with reduced co-localization of BST-2 and the virion protein Gag along the plasma membrane. Together, the data support a model in which Vpu co-opts the beta-TrCP/SCF E3 ubiquitin ligase complex to induce endosomal trafficking events that remove BST-2 from its site of action as a virion-tethering factor.


Assuntos
HIV-1/patogenicidade , Proteínas do Vírus da Imunodeficiência Humana/fisiologia , Lisossomos/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/fisiologia , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Complexo 2 de Proteínas Adaptadoras , Antígenos CD/genética , Antígenos CD/metabolismo , Linhagem Celular , Regulação para Baixo , Endossomos/metabolismo , Proteínas Ligadas por GPI , HIV-1/fisiologia , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutação , Transporte Proteico , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Contendo Repetições de beta-Transducina/genética
9.
Exp Cell Res ; 316(4): 667-75, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19909739

RESUMO

The SYK non-receptor tyrosine kinase is a key effector of immune receptors signaling in hematopoietic cells. Here, we identified and characterized a novel interaction between SYK and the ubiquitin-specific protease 25 (USP25). We report that the second SH2 domain of SYK physically interacts with a tyrosine-rich, C-terminal region of USP25 independently of tyrosine phosphorylation. Moreover, we showed that SYK specifically phosphorylates USP25 and alters its cellular levels. This study thus uncovers a new SYK substrate and reveals a novel SYK function, namely the regulation of USP25 cellular levels.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Tirosina Quinases/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Mapeamento Cromossômico , Vetores Genéticos/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/genética , Fosforilação , Plasmídeos/genética , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/genética , Quinase Syk , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina Tiolesterase/genética
10.
Methods ; 47(4): 291-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19232540

RESUMO

Here we describe methods developed based on systematic yeast two-hybrid screenings that allowed us to identify several binding partners of HIV-1 integrase. We have developed an efficient strategy to perform large comprehensive screenings with different highly complex cDNA libraries derived both random- and oligo-dT primed reactions. A very efficient mating procedure was used for screening in yeast, allowing genetic saturation of positive clones. This importantly leads with confidence to the determination of the regions within the participating proteins responsible for the interactions. Several additional tools were used that allowed us to assess the specificity of the interactions detected, including rebound screens with cellular co-factors as baits performed against a library of random fragments of HIV-1 proviral DNA. For some of the identified cell factors, we have generated and characterized loss of affinity mutants of integrase, which, when combined with viral functional assays, validated the involvement of human lens epithelium-derived growth factor (LEDGF/p75) in the integration step of the HIV-1 replication cycle. All tolled, our studies identified LEDGF/p75, Transportin-SR2 (TNPO3), von Hippel-Lindau binding protein 1 (VBP1), and sucrose non-fermenting 5 (SNF5) as cellular binding partners of HIV-1 integrase.


Assuntos
Integrase de HIV/metabolismo , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Integração Viral/fisiologia , Biblioteca Gênica , Integrase de HIV/genética , Inibidores de Integrase de HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Humanos
11.
PLoS Pathog ; 3(7): e104, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17676996

RESUMO

Viral protein U (Vpu) of HIV-1 has two known functions in replication of the virus: degradation of its cellular receptor CD4 and enhancement of viral particle release. Vpu binds CD4 and simultaneously recruits the betaTrCP subunit of the SCF(betaTrCP) ubiquitin ligase complex through its constitutively phosphorylated DS52GXXS56 motif. In this process, Vpu was found to escape degradation, while inhibiting the degradation of betaTrCP natural targets such as beta-catenin and IkappaBalpha. We further addressed this Vpu inhibitory function with respect to the degradation of Emi1 and Cdc25A, two betaTrCP substrates involved in cell-cycle progression. In the course of these experiments, we underscored the importance of a novel phosphorylation site in Vpu. We show that, especially in cells arrested in early mitosis, Vpu undergoes phosphorylation of the serine 61 residue, which lies adjacent to the betaTrCP-binding motif. This phosphorylation event triggers Vpu degradation by a betaTrCP-independent process. Mutation of Vpu S61 in the HIV-1 provirus extends the half-life of the protein and significantly increases the release of HIV-1 particles from HeLa cells. However, the S61 determinant of regulated Vpu turnover is highly conserved within HIV-1 isolates. Altogether, our results highlight a mechanism where differential phosphorylation of Vpu determines its fate as an adaptor or as a substrate of distinct ubiquitin ligases. Conservation of the Vpu degradation determinant, despite its negative effect on virion release, argues for a role in overall HIV-1 fitness.


Assuntos
Regulação Viral da Expressão Gênica , HIV-1/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral/fisiologia , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Chlorocebus aethiops , Proteínas F-Box/metabolismo , HIV-1/patogenicidade , Proteínas do Vírus da Imunodeficiência Humana , Humanos , Dados de Sequência Molecular , Fosforilação , Ubiquitina/metabolismo , Fosfatases cdc25/metabolismo
12.
Cancer Res ; 67(3): 1054-61, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17283138

RESUMO

The Ras-association domain family 1 (RASSF1) gene has seven different isoforms; isoform A is a tumor-suppressor gene (RASSF1A). The promoter of RASSF1A is inactivated in many cancers, whereas the expression of another major isoform, RASSF1C, is not affected. Here, we show that RASSF1C, but not RASSF1A, interacts with betaTrCP. Binding of RASSF1C to betaTrCP involves serine 18 and serine 19 of the SS(18)GYXS(19) motif present in RASSF1C but not in RASSF1A. This motif is reminiscent of the canonical phosphorylation motif recognized by betaTrCP; however, surprisingly, the association between RASSF1C and betaTrCP does not occur via the betaTrCP substrate binding domain, the WD40 repeats. Overexpression of RASSF1C, but not of RASSF1A, resulted in accumulation and transcriptional activation of the beta-catenin oncogene, due to inhibition of its betaTrCP-mediated degradation. Silencing of RASSF1A by small interfering RNA was sufficient for beta-catenin to accumulate, whereas silencing of both RASSF1A and RASSF1C had no effect. Thus, RASSF1A and RASSF1C have opposite effects on beta-catenin degradation. Our results suggest that RASSF1C expression in the absence of RASSF1A could play a role in tumorigenesis.


Assuntos
Proteínas Supressoras de Tumor/metabolismo , beta Catenina/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Motivos de Aminoácidos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Inativação Gênica , Células HeLa , Humanos , Ligação Proteica , RNA Interferente Pequeno/genética , Proteínas Supressoras de Tumor/genética , beta Catenina/antagonistas & inibidores , beta Catenina/biossíntese , beta Catenina/genética
13.
Retrovirology ; 5: 47, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18544151

RESUMO

Reverse transcription of the genetic material of human immunodeficiency virus type 1 (HIV-1) is a critical step in the replication cycle of this virus. This process, catalyzed by reverse transcriptase (RT), is well characterized at the biochemical level. However, in infected cells, reverse transcription occurs in a multiprotein complex - the reverse transcription complex (RTC) - consisting of viral genomic RNA associated with viral proteins (including RT) and, presumably, as yet uncharacterized cellular proteins. Very little is known about the cellular proteins interacting with the RTC, and with reverse transcriptase in particular. We report here that HIV-1 reverse transcription is affected by the levels of a nucleocytoplasmic shuttling protein - the RNA-binding protein HuR. A direct protein-protein interaction between RT and HuR was observed in a yeast two-hybrid screen and confirmed in vitro by homogenous time-resolved fluorescence (HTRF). We mapped the domain interacting with HuR to the RNAse H domain of RT, and the binding domain for RT to the C-terminus of HuR, partially overlapping the third RRM RNA-binding domain of HuR. HuR silencing with specific siRNAs greatly impaired early and late steps of reverse transcription, significantly inhibiting HIV-1 infection. Moreover, by mutagenesis and immunoprecipitation studies, we could not detect the binding of HuR to the viral RNA. These results suggest that HuR may be involved in and may modulate the reverse transcription reaction of HIV-1, by an as yet unknown mechanism involving a protein-protein interaction with HIV-1 RT.


Assuntos
Antígenos de Superfície/metabolismo , Transcriptase Reversa do HIV/metabolismo , HIV-1/fisiologia , Mapeamento de Interação de Proteínas , Proteínas de Ligação a RNA/metabolismo , Replicação Viral , Sítios de Ligação , Linhagem Celular , Imunoprecipitação da Cromatina , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Fluorimunoensaio , Inativação Gênica , Humanos , Domínios e Motivos de Interação entre Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Técnicas do Sistema de Duplo-Híbrido
14.
J Mol Biol ; 372(2): 407-21, 2007 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-17669426

RESUMO

The transcriptional co-activator lens epithelium-derived growth factor (LEDGF) has been shown to protect cells against environmental stress. The protein has been implicated in auto-immunity and cancer, and is present in cells as the p52 or p75 splice variant. Recently, LEDGF/p75, but not p52, was identified as the prominent interaction partner of human immunodeficiency virus type 1 (HIV-1) integrase. This interaction of HIV-1 integrase with the C-terminal integrase-binding domain of LEDGF/p75 is crucial for HIV-1 replication. To gain insight into the cell biology of LEDGF/p75, we were interested in identifying cellular binding partners of its C-terminal domain. By yeast-two-hybrid screening with a CEMC7 cDNA-library, we were able to identify JPO2 as a binding partner of the C-terminal part of LEDGF/p75. The specific interaction between JPO2 and LEDGF/p75 was verified by pull-down, AlphaScreen, and co-immunoprecipitation. Competition assays using recombinant proteins show a mutually exclusive binding of either JPO2 or HIV-1 integrase to LEDGF/p75. However, differing mechanisms of binding were suggested by continuing interaction of JPO2 with some LEDGF/p75 mutants (I365A, D366A, F406A) that are totally defective for interaction with HIV-1 integrase. This finding is of significance for the development of specific inhibitors targeting only the interaction between LEDGF/p75 and HIV-1 integrase, without disturbing interaction with other cellular factors. Over-expression of JPO2 resulted in a modest but reproducible inhibition of HIV-1 replication, consistent with competition between integrase and JPO2 for binding to LEDGF/p75. Furthermore, JPO2 over-expression activated transcription from the HIV-1 LTR.


Assuntos
Integrase de HIV/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Animais , Ligação Competitiva , Expressão Gênica , HIV-1/enzimologia , HIV-1/fisiologia , Células HeLa , Humanos , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Repressoras/química , Proteínas Repressoras/genética , Replicação Viral , Zinco/farmacologia
15.
J Mol Biol ; 365(5): 1480-92, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17137594

RESUMO

Lens epithelium-derived growth factor (LEDGF)/p75 is an important cellular co-factor for human immunodeficiency virus (HIV) replication. We originally identified LEDGF/p75 as a binding partner of integrase (IN) in human cells. The interaction has been mapped to the integrase-binding domain (IBD) of LEDGF/p75 located in the C-terminal part. We have subsequently shown that IN carrying the Q168A mutation remains enzymatically active but is impaired for interaction with LEDGF/p75. To map the integrase/LEDGF interface in more detail, we have now identified and characterized two regions within the enzyme involved in the interaction with LEDGF/p75. The first region centers around residues W131 and W132 while the second extends from I161 up to E170. For the different IN mutants the interaction with LEDGF/p75 and the enzymatic activities were determined. IN(W131A), IN(I161A), IN(R166A), IN(Q168A) and IN(E170A) are impaired for interaction with LEDGF/p75, but retain 3' processing and strand transfer activities. Due to impaired integration, an HIV-1 strain containing the W131A mutation in IN displays reduced replication capacity, whereas virus carrying IN(Q168A) is replication defective. Comparison of the wild-type IN-LEDGF/p75 co-crystal structure with that of the modelled structure of the IN(Q168A) and IN(W131A) mutant integrases corroborated our experimental data.


Assuntos
Integrase de HIV/química , Integrase de HIV/metabolismo , HIV-1/enzimologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , DNA Viral/biossíntese , HIV-1/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Replicação Viral/fisiologia
16.
J Mol Biol ; 364(5): 1034-47, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17054986

RESUMO

In our search for new partners of the HIV-1 envelope glycoprotein (Env), we found that the cytoplasmic domain of the TMgp41 (TMgp41 CD) subunit of HIV-1 Env interacted with Luman, a transcription factor of the CREB/ATF family. Luman is anchored in the endoplasmic reticulum membrane and subjected to activation by regulated intramembrane proteolysis (RIP). The RIP process permits the release of the activated amino-terminal fragment of Luman into the cytoplasm, and its import into the nucleus. Here, we demonstrate that interaction between the TMgp41 CD and Luman requires a region encompassing the b-Zip and TM domains of Luman and decreases the stability of this factor. Moreover, we found that overexpression of a constitutively active form of Luman in cells transfected with HXB2R HIV-1 provirus decreased the intracellular expression of Gag and Env and led to a decrease in virion release. This negative effect of activated Luman on HIV-1 production was correlated to the inhibition of Tat transactivation of the HIV-1 LTR, which might be related to an interaction of activated Luman with Tat. Altogether, these results show that Luman acts as a partner of two major HIV-1 proteins: the TMgp41 Env subunit and Tat. The interaction between the TMgp41 subunit of Env and Luman affects the stability of the full-length Luman protein, the precursor of the activated, nuclear form of Luman, which acts negatively on Tat-mediated HIV-1 transactivation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Produtos do Gene tat/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Repetição Terminal Longa de HIV/genética , HIV-1 , Transcrição Gênica , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Regulação Viral da Expressão Gênica , Produtos do Gene gag/metabolismo , Produtos do Gene tat/genética , Genes gag , Proteína gp41 do Envelope de HIV/genética , Humanos , Imunoprecipitação , Provírus , Saccharomyces cerevisiae , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido , Replicação Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana
17.
Peptides ; 28(12): 2253-67, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17996332

RESUMO

ATF4 plays a crucial role in the cellular response to stress and the F-box protein beta-TrCP, the receptor component of the SCF E3 ubiquitin ligase responsible for ATF4 degradation by the proteasome, binds to ATF4, and controls its stability. Association between the two proteins depends on ATF4 phosphorylation of serine residues 219 and 224 present in the context of DpSGXXXpS, which is similar but not identical to the DpSGXXpS motif found in most other substrates of beta-TrCP. We used NMR spectroscopy to analyze the structure of the 23P-ATF4 peptide. The 3D structure of the ligand was determined on the basis of NOESY restraints that provide an hairpin loop structure. In contrast, no ordered structure was observed in the NMR experiments for the nonphosphorylated 23-ATF4 in solution. This structural study provides information, which could be used to study the beta-TrCP receptor-ligand interaction in docking procedure. Docking studies showed that the binding epitope of the ligand, is represented by the DpSGIXXpSXE motif. 23P-ATF4 peptide fits the binding pocket of protein beta-TrCP very well, considering that the DpSGIXXpSXE motif adopts an S-turning conformation contrary to the extended DpSGXXpS motif in the other known beta-TrCP ligands.


Assuntos
Fator 4 Ativador da Transcrição/química , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Conformação Proteica , Proteínas Contendo Repetições de beta-Transducina/química , Proteínas Contendo Repetições de beta-Transducina/metabolismo
18.
Oncogene ; 24(13): 2271-6, 2005 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15735746

RESUMO

Genetic alterations affecting beta-catenin, adenomatous polyposis coli or axin proteins are associated with the pathogenesis of numerous human tumors. All these mutations result in the synthesis of unphosphorylated beta-catenin that escapes recognition by the beta transducin repeat protein (beta TrCP1), the receptor of an ubiquitin. The stabilized beta-catenin translocates to the nucleus and activates the transcription of genes crucial for tumorigenesis. Recent evidence implicates mutations and overexpresssion of beta TrCP1 in human prostate and colon tumors, respectively, suggesting that deregulated beta TrCP1 may be involved in tumorigenesis. To explore this possibility further, we generated transgenic mice that specifically express a dominant-negative mutant of beta TrCP1 (Delta F beta TrCP1) or full-length beta TrCP1 in intestine, liver and kidney. We found that 46% (16/35) of the transgenic mice that overexpressed the transgenes developed either intestinal adenomas (10/35) or hepatic (4/35) or urothelial (2/35) tumors. Immunohistological analysis of the tumors revealed that upregulation of cyclin D1, glutamine synthetase and chemotaxin 2 was associated with nuclear accumulation of beta-catenin. These results show that the overexpression of Delta F beta TrCP1 or beta TrCP1 in vivo induce tumors through beta-catenin activation.


Assuntos
Neoplasias/genética , Proteínas Contendo Repetições de beta-Transducina/genética , Adenoma/genética , Adenoma/patologia , Animais , Proteínas do Citoesqueleto/genética , Humanos , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Transgênicos , Deleção de Sequência , Transativadores/genética , beta Catenina
19.
FEBS Lett ; 580(22): 5411-22, 2006 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-16996060

RESUMO

The interaction of the P-beta-Cat(19-44) peptide, a 26 amino acid peptide (K(19)AAVSHWQQQSYLDpSGIHpSGATTTAP(44)) that mimics the phosphorylated beta-Catenin antigen, has been studied with its monoclonal antibody BC-22, by transferred nuclear Overhauser effect NMR spectroscopy (TRNOESY) and saturation transfer difference NMR (STD NMR) spectroscopy. This antibody is specific to diphosphorylated beta-Catenin and does not react with the non-phosphorylated protein. Phosphorylation of beta-Catenin at sites Ser33 and Ser37 on the DSGXXS motif is required for the interaction of beta-Catenin with the ubiquitin ligase SCF(beta-TrCP). beta-TrCP is involved in the ubiquitination and proteasome targeting of the oncogenic protein beta-Catenin, the accumulation of which has been implicated in various human cancers. The three-dimensional structure of the P-beta-Cat(19-44) in the bound conformation was determined by TRNOESY NMR experiments; the peptide adopts a compact structure in the presence of mAb with formation of turns around Trp25 and Gln26, with a tight bend created by the DpS(33)GIHpS(37) motif; the peptide residues (D32-pS37) forming this bend are recognized by the antibody as demonstrated by STD NMR experiments. STD NMR studies provide evidence for the existence of a conformational epitope containing tandem repeats of phosphoserine motifs. The peptide's epitope is predominantly located in the large bend and in the N-terminal segment, implicating bidentate association. These findings are in excellent agreement with a recently published NMR structure required for the interaction of beta-Catenin with the SCF(beta-TrCP) protein.


Assuntos
Mapeamento de Epitopos , Epitopos/química , Modelos Moleculares , Proteínas de Neoplasias/química , Peptídeos/química , beta Catenina/química , Motivos de Aminoácidos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Mapeamento de Epitopos/métodos , Epitopos/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Ligases SKP Culina F-Box/química , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina/metabolismo , beta Catenina/metabolismo
20.
Peptides ; 27(1): 194-210, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16165251

RESUMO

The human immunodeficiency virus type 1 (HIV-1) Vpu enhances viral particle release and, its interaction with the ubiquitin ligase SCF-beta-TrCP triggers the HIV-1 receptor CD4 degradation by the proteasome. The interaction between beta-TrCP protein and ligands containing the phosphorylated DpSGXXpS motif plays a key role for the development of severe disease states, such as HIV or cancer. This study examines the binding and conformation of phosphopeptides (P1, LIERAEDpSG and P2, EDpSGNEpSE) from HIV protein Vpu to beta-TrCP with the objective of defining the minimum length of peptide needed for effective binding. The screening step can be analyzed by NMR spectroscopy, in particular, saturation transfer NMR methods clearly identify the residues in the peptide that make direct contact with beta-TrCP protein when bound. An analysis of saturation transfer difference (STD) spectra provided clear evidence that the two peptides efficiently bound beta-TrCP receptor protein. To better characterize the ligand-protein interaction, the bound conformation of the phosphorylated peptides was determined using transferred NOESY methods, which gave rise to a well-defined structure. P1 and P2 can fold in a bend arrangement for the DpSG motif, showing the protons identified by STD-NMR as exposed in close proximity at the molecule surface. Ser phosphorylation allows electrostatic interaction and hydrogen bond with the amino acids of the beta-TrCP binding pocket. The upstream LIER hydrophobic region was also essential in binding to a hydrophobic pocket of the beta-TrCP WD domain. These findings are in good agreement with a recently published X-ray structure of a shorter beta-Catenin fragment with the beta-TrCP complex.


Assuntos
HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/química , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Contendo Repetições de beta-Transducina/química , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , HIV-1/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA