Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Sci ; 28(1): 77, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34781949

RESUMO

CRISPR (clustered regularly interspaced short palindromic repeats) systems are one of the most fascinating tools of the current era in molecular biotechnology. With the ease that they provide in genome editing, CRISPR systems generate broad opportunities for targeting mutations. Specifically in recent years, disease-causing mutations targeted by the CRISPR systems have been of main research interest; particularly for those diseases where there is no current cure, including cancer. KRAS mutations remain untargetable in cancer. Mutations in this oncogene are main drivers in common cancers, including lung, colorectal and pancreatic cancers, which are severe causes of public health burden and mortality worldwide, with no cure at hand. CRISPR systems provide an opportunity for targeting cancer causing mutations. In this review, we highlight the work published on CRISPR applications targeting KRAS mutations directly, as well as CRISPR applications targeting mutations in KRAS-related molecules. In specific, we focus on lung, colorectal and pancreatic cancers. To date, the limited literature on CRISPR applications targeting KRAS, reflect promising results. Namely, direct targeting of mutant KRAS variants using various CRISPR systems resulted in significant decrease in cell viability and proliferation in vitro, as well as tumor growth inhibition in vivo. In addition, the effect of mutant KRAS knockdown, via CRISPR, has been observed to exert regulatory effects on the downstream molecules including PI3K, ERK, Akt, Stat3, and c-myc. Molecules in the KRAS pathway have been subjected to CRISPR applications more often than KRAS itself. The aim of using CRISPR systems in these studies was mainly to analyze the therapeutic potential of possible downstream and upstream effectors of KRAS, as well as to discover further potential molecules. Although there have been molecules identified to have such potential in treatment of KRAS-driven cancers, a substantial amount of effort is still needed to establish treatment strategies based on these discoveries. We conclude that, at this point in time, despite being such a powerful directed genome editing tool, CRISPR remains to be underutilized for targeting KRAS mutations in cancer. Efforts channelled in this direction, might pave the way in solving the long-standing challenge of targeting the KRAS mutations in cancers.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Mutação , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Animais , Humanos , Camundongos
2.
Mol Med ; 22: 380-387, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27447490

RESUMO

Lung cancer is the leading cause of mortality among all cancer types, worldwide. Latest available global statistics of World Health Organization report 1.59 million casualities in 2012 alone. Worldwide, 1 in 5 cancer deaths are caused by lung cancer. In 2016, in USA alone, estimated new cases of lung cancer are 224,390, of which 158,080 are expected to result in death as reported by National Cancer Institute. Non-small cell lung cancer (NSCLC), a histological subtype, comprises of about 85% of all cases, which is nearly 9 out of 10 lung cancer patients. Efforts are underway to develop and improve targeted therapy strategies. Certain mutations are being clinically targeted such as those in EGFR and ALK genes. However, one of the most frequently mutated genes in NSCLC is the KRAS oncogene, which is currently untargetable. Approximately 25% of all types of NSCLC tumors contain KRAS mutations, which remain as an undruggable challenge. These mutations are indicative of poor prognosis and confer negative response to standard chemotherapy. Furthermore, tumors harboring KRAS mutations are unlikely to respond to currently available targeted treatments such as Tyrosine Kinase Inhibitors. Therefore, there is a definitive, urgent need to generate new targeted therapy approaches for KRAS mutations. Current strategies have major limitations and evolve around targeting molecules upstream and downstream of KRAS. Direct targeting is not available in the clinic. Combination therapies of multiple agents are being sought. Concentrated efforts are needed to accelerate basic research and consecutive clinical trials to achieve effective targeting of KRAS.

3.
Adv Drug Deliv Rev ; 159: 94-119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33080259

RESUMO

High-density lipoprotein (HDL) plays an important role in lipid metabolism and especially contributes to the reverse cholesterol transport pathway. Over recent years it has become clear that the effect of HDL on immune-modulation is not only dependent on HDL concentration but also and perhaps even more so on HDL function. This review will provide a concise general introduction to HDL followed by an overview of post-translational modifications of HDL and a detailed overview of the role of HDL in inflammatory diseases. The clinical potential of HDL and its main apolipoprotein constituent, apoA-I, is also addressed in this context. Finally, some conclusions and remarks that are important for future HDL-based research and further development of HDL-focused therapies are discussed.


Assuntos
Inflamação/metabolismo , Lipoproteínas HDL/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Humanos , Doenças do Sistema Imunitário/metabolismo , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA