Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Contam Hydrol ; 94(3-4): 178-94, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17686548

RESUMO

Leaching and tracer experiments in batches at L/S 20 were performed with 3-month-old MSWI bottom ash separated into eight different particle sizes. The time-dependent leaching of major elements (Ca(2+), K(+), Na(+), Cl(-) and SO(4)(-2)) was monitored for up to 747 h. Physical properties of the particles, the specific surface (BET), pore volume and pore volume distribution over pore sizes (BJH) were determined for all particle classes by N(2) adsorption/desorption experiments. Some common features of physical pore structure for all particles were revealed. The specific surface and the particle pore volume were found to be negatively correlated with particle size, ranging from 3.2 m(2)/g to 25.7 m(2)/g for the surface area and from 0.0086 cm(3)/g to 0.091 cm(3)/g for the pore volume. Not surprisingly, the specific surface area was found to be the major material parameter that governed the leaching behavior for all elements (Ca(2+), K(+), Na(+), Cl(-) and SO(4)(-2)) and particle sizes. The diffusion resistance was determined independently by separate tracer (tritium) experiments. Diffusion gave a significant contribution to the apparent leaching kinetics for all elements during the first 10-40 h (depending on the particle size) of leaching and surface reaction was the overall rate controlling mechanism at late times for all particle sizes. For Ca(2+) and SO(4)(-2), the coupled effect of diffusion resistance and the degree of under-saturation in the intra particle pore volume was found to be a major rate limiting dissolution mechanism for both early and late times. The solubility control in the intra particulate porosity may undermine any attempt to treat bottom ash by washing out the sulfate. Even for high liquid/solid ratios, the solubility in the intra-particular porosity will limit the release rate.


Assuntos
Cloretos/química , Incineração , Metais/química , Sulfatos/química , Cinética , Modelos Químicos , Tamanho da Partícula , Solubilidade , Propriedades de Superfície , Água/química
2.
J Hazard Mater ; 122(3): 195-204, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15967274

RESUMO

Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discharge to the environment through sewage treatment plants (STPs). In this study, the occurrence and fate of selected human PhACs belonging to different therapeutic classes (non-steroidal anti-inflammatory drugs, lipid regulators, anti-epileptics, antibiotics and beta-blockers) were investigated in a small river in the very south of Sweden. The objectives of the study were to evaluate the impact of a high and rather constant load in sewage influent on downstream concentrations and whether substances that are metabolized to a high degree in humans also show a low persistency in a natural aquatic environment. Water samples were collected from the influent and effluent of the STP, in a series of dammed reservoirs leading to discharge into the Höje River in Sweden, and at several locations in the river downstream of the outfall. After enrichment by solid-phase extraction, the compounds were analyzed using GC-MS (methylated derivatives) or LC-MS/MS. In addition to the targeted pharmaceuticals, GC-MS analysis of the samples revealed the presence of other sewage-related pollutants (triclosan, caffeine, flame-retardants, antioxidants) and these results where included for comparison. Removal efficiencies were calculated in the STP and found to display a wide range with numerous species surviving treatment at greater than half their influent concentrations, including diclofenac, the anti-epileptic carbamazepine, a beta-blocker (propanolol), and antibiotics trimetoprim and sulfamethoxazole. Low removals were also observed for Tris(2-chloroisopropyl)phosphate (flame retardant), BHT-aldehyde (oxidation product of BHT) and synthetic musk (HHCB). The concentrations of chloride (Cl(-)) and boron (B) were used as natural inert tracers to estimate the relative extent of dilution of PhACs measured in the effluent of the STP on concentrations measured further downstream. Based on spatial trends of concentrations (recalculated to reflect a hypothetical scenario with no dilution), ibuprofen, ketoprofen, naproxen and dicofenac were shown to be subject to significant abiotic or biotic transformations or physical sequestration in the river. The beta-blockers atenolol, metoprolol and propanolol, the antibiotics trimetoprim and sulfametoxazole, and carbamazepine demonstrated a high degree of persistence. Fluctuations in the concentration of carbamazepine and gemfibrozil were observed along the series of reservoirs and within the river and are hypothesized to be due to release of parent compound from glucuronides. Several of the investigated substances (metaprolol, propanolol and carbamazepin) that exhibit low excretion rates as parent compounds demonstrate a surprising persistence in the aquatic environment. It is concluded that pharmaceutical substances with a high metabolic rate in humans (low excretion rate) do not necessarily induce a short lifetime in aquatic environments. Results from this study emphasize the need for a broader view on the concept of persistence that accounts for loading rates, in addition to removal mechanisms (e.g., transformation, volatility and physical sequestration by solids), under a variety of spatial and temporal scales.


Assuntos
Preparações Farmacêuticas/análise , Rios/química , Esgotos/química , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , Antagonistas Adrenérgicos beta/análise , Antibacterianos/análise , Carbamazepina/análise , Diclofenaco/análise , Monitoramento Ambiental/métodos , Humanos , Ibuprofeno/análise , Concentração Osmolar , Suécia
3.
Artigo em Inglês | MEDLINE | ID: mdl-19184701

RESUMO

In order to predict consequences of replacing jet grouting with biogrouting, and identify major contributors to the cost of both technologies, a large road project in Stockholm, Sweden, was used as a case study. Jet grouting had been used to seal the contact between sheet piling and bedrock, biogrouting for the same function was computed. A comparative environmental and economical assessment was carried out using life cycle assessment (LCA). The results show that biogrouting was cheaper than jet grouting and would have had lower environmental impact. The major difference was the transport and use of heavier equipment for jet grouting. Biogrouting also used less water and produced less landfilled waste. However, the production of urea and CaCl(2) for biogrouting required much energy.


Assuntos
Meio Ambiente , Meios de Transporte , Medição de Risco , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA