RESUMO
Loss of B lymphocyte regeneration in the bone marrow (BM) is an immunologic hallmark of advanced age, which impairs the replenishment of peripheral B-cell subsets and results in impaired humoral responses, thereby contributing to immune system dysfunction associated with aging. A better understanding of the mechanism behind this loss may suggest ways to restore immune competence and promote healthy aging. In this study, we uncover an immune-endocrine regulatory circuit that mediates cross-talk between peripheral B cells and progenitors in the BM, to balance B-cell lymphopoiesis in both human and mouse aging. We found that tumor necrosis factor α (TNF-α), which is increasingly produced by peripheral B cells during aging, stimulates the production of insulin-like growth factor-binding protein 1 (IGFBP-1), which binds and sequesters insulin-like growth factor 1 (IGF-1) in the circulation, thereby restraining its activity in promoting B-cell lymphopoiesis in the BM. Upon B-cell depletion in aging humans and mice, circulatory TNF-α decreases, resulting in increased IGF-1 and reactivation of B-cell lymphopoiesis. Perturbation of this circuit by administration of IGF-1 to old mice or anti-TNF-α antibodies to human patients restored B-cell lymphopoiesis in the BM. Thus, we suggest that in both human and mouse aging, peripheral B cells use the TNF-α/IGFBP-1/IGF-1 axis to repress B-cell lymphopoiesis. This trial was registered at www.clinicaltrials.govas#NCT00863187.
Assuntos
Envelhecimento , Linfócitos B/imunologia , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/imunologia , Fator de Crescimento Insulin-Like I/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adulto , Animais , Linfócitos B/citologia , Células Cultivadas , Feminino , Humanos , Imunidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transdução de Sinais , Adulto JovemRESUMO
The phosphatidylinositol 3-kinase (PI3K) signaling cascade downstream of the B cell receptor (BCR) signalosome is essential for B cell maturation. Proper signaling strength is maintained through the PI3K negative regulator phosphatase and tensin homolog (PTEN). Although a role for microRNA (miRNA)-dependent control of the PTEN-PI3K axis has been described, the contribution of individual miRNAs to the regulation of this crucial signaling modality in mature B lymphocytes remains to be elucidated. Our analyses reveal that ablation of miR-29 specifically in B lymphocytes results in an increase in PTEN expression and dampening of the PI3K pathway in mature B cells. This dysregulation has a profound impact on the survival of B lymphocytes and results in increased class switch recombination and decreased plasma cell differentiation. Furthermore, we demonstrate that ablation of one copy of Pten is sufficient to ameliorate the phenotypes associated with miR-29 loss. Our data suggest a critical role for the miR-29-PTEN-PI3K regulatory axis in mature B lymphocytes.
Assuntos
Linfócitos B/metabolismo , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos , Transdução de Sinais , Análise de SobrevidaRESUMO
Aging is associated with increasing prevalence and severity of infections caused by a decline in bone marrow (BM) lymphopoiesis and reduced B-cell repertoire diversity. The current study proposes a strategy to enhance immune responsiveness in aged mice and humans, through rejuvenation of the B lineage upon B-cell depletion. We used hCD20Tg mice to deplete peripheral B cells in old and young mice, analyzing B-cell subsets, repertoire and cellular functions in vitro, and immune responsiveness in vivo. Additionally, elderly patients, previously treated with rituximab healthy elderly and young individuals, were vaccinated against hepatitis B (HBV) after undergoing a detailed analysis for B-cell compartments. B-cell depletion in old mice resulted in rejuvenated B-cell population that was derived from de novo synthesis in the bone marrow. The rejuvenated B cells exhibited a "young"-like repertoire and cellular responsiveness to immune stimuli in vitro. Yet, mice treated with B-cell depletion did not mount enhanced antibody responses to immunization in vivo, nor did they survive longer than control mice in "dirty" environment. Consistent with these results, peripheral B cells from elderly depleted patients showed a "young"-like repertoire, population dynamics, and cellular responsiveness to stimulus. Nevertheless, the response rate to HBV vaccination was similar between elderly depleted and nondepleted subjects, although antibody titers were higher in depleted patients. This study proposes a proof of principle to rejuvenate the peripheral B-cell compartment in aging, through B-cell depletion. Further studies are warranted in order to apply this approach for enhancing humoral immune responsiveness among the elderly population.
Assuntos
Envelhecimento/imunologia , Linfócitos B/imunologia , Depleção Linfocítica/métodos , Rejuvenescimento/fisiologia , Adolescente , Adulto , Idoso , Animais , Antígenos CD20/genética , Antígenos CD20/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Células da Medula Óssea/imunologia , Feminino , Voluntários Saudáveis , Humanos , Linfoma de Células B/sangue , Linfoma de Células B/tratamento farmacológico , Linfopoese/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Pessoa de Meia-Idade , Estudos Prospectivos , Rituximab/uso terapêutico , Adulto JovemRESUMO
Appropriate PI3K signals generated by the antigen receptor are essential to promote B cell development. Regulation of recombination activating gene (RAG)-1 and RAG-2 expression is one key process that is mediated by PI3K to ensure developmental progression and selection. When PI3K signals are too high or too low, expression of RAGs does not turn off and B cell development is impaired or blocked. Yet, the mechanism which tunes PI3K activity to control RAG expression during B cell development in the bone marrow is unknown. Recently we showed that a c-Myc/miR17-92/PTEN axis regulates PI3K activity for positive and negative selection of immature B cells. Here, we show that the c-Myc/miR17-92/PTEN axis tunes PI3K activity to control the expression of RAGs in proB cells. Using different genetically engineered mouse models we show that impaired function of the c-Myc/miR17-92/PTEN axis alters the PI3K/Akt/Foxo1 pathway to result in dis-regulated expression of RAG and a block in B cell development. Studies using 38c-13 B lymphoma cells, where RAGs are constitutively expressed, suggest that this regulatory effect is mediated post-translationally through Foxo1.
Assuntos
Regulação da Expressão Gênica/imunologia , Rearranjo Gênico do Linfócito B , MicroRNAs/imunologia , PTEN Fosfo-Hidrolase/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Células Precursoras de Linfócitos B/imunologia , Proteínas Proto-Oncogênicas c-myc/imunologia , Recombinação Genética/imunologia , Animais , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Células Precursoras de Linfócitos B/citologia , Proteínas Proto-Oncogênicas c-myc/genéticaRESUMO
Cellular homeostasis in the B cell compartment is strictly imposed to balance cell production and cell loss. However, it is not clear whether B cell development in the bone marrow is an autonomous process or subjected to regulation by the peripheral B cell compartment. To specifically address this question, we used mice transgenic for human CD20, where effective depletion of B lineage cells is obtained upon administration of mouse anti-human CD20 antibodies, in the absence of any effect on other cell lineages and/or tissues. We followed the kinetics of B cell return to equilibrium by BrdU labeling and flow cytometry and analyzed the resulting data by mathematical modeling. Labeling was much faster in depleted mice. Compared to control mice, B cell-depleted mice exhibited a higher proliferation rate in the pro-/pre-B compartment, and higher cell death and lower differentiation in the immature B cell compartment. We validated the first result by analysis of the expression of Ki67, the nuclear protein expressed in proliferating cells, and the second using Annexin V staining. Collectively, our results suggest that B lymphopoiesis is subjected to homeostatic feedback mechanisms imposed by mature B cells in the peripheral compartment.
RESUMO
PI3K activity determines positive and negative selection of B cells, a key process for immune tolerance and B cell maturation. Activation of PI3K is balanced by phosphatase and tensin homolog (Pten), the PI3K's main antagonistic phosphatase. Yet, the extent of feedback regulation between PI3K activity and Pten expression during B cell development is unclear. Here, we show that PI3K control of this process is achieved post-transcriptionally by an axis composed of a transcription factor (c-Myc), a microRNA (miR17-92), and Pten. Enhancing activation of this axis through overexpression of miR17-92 reconstitutes the impaired PI3K activity for positive selection in CD19-deficient B cells and restores most of the B cell developmental impairments that are evident in CD19-deficient mice. Using a genetic approach of deletion and complementation, we show that the c-Myc/miR17-92/Pten axis critically controls PI3K activity and the sensitivity of immature B cells to negative selection imposed by activation-induced cell death.
Assuntos
Antígenos CD19/genética , Linfócitos B/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Animais , Antígenos CD19/metabolismo , Morte Celular , Células Cultivadas , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Teste de Complementação Genética , Heterozigoto , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismoRESUMO
Ubiquitylation regulates signaling pathways critical for cancer development and, in many cases, targets proteins for degradation. Here, we report that ubiquitylation by RNF4 stabilizes otherwise short-lived oncogenic transcription factors, including ß-catenin, Myc, c-Jun, and the Notch intracellular-domain (N-ICD) protein. RNF4 enhances the transcriptional activity of these factors, as well as Wnt- and Notch-dependent gene expression. While RNF4 is a SUMO-targeted ubiquitin ligase, protein stabilization requires the substrate's phosphorylation, rather than SUMOylation, and binding to RNF4's arginine-rich motif domain. Stabilization also involves generation of unusual polyubiquitin chains and docking of RNF4 to chromatin. Biologically, RNF4 enhances the tumor phenotype and is essential for cancer cell survival. High levels of RNF4 mRNA correlate with poor survival of a subgroup of breast cancer patients, and RNF4 protein levels are elevated in 30% of human colon adenocarcinomas. Thus, RNF4-dependent ubiquitylation translates transient phosphorylation signal(s) into long-term protein stabilization, resulting in enhanced oncoprotein activation.
Assuntos
Proteínas Nucleares/metabolismo , Oncogenes/fisiologia , Estabilidade Proteica , Fatores de Transcrição/metabolismo , Humanos , UbiquitinaçãoRESUMO
B cell development is a tightly regulated process dependent on sequential rearrangements of immunoglobulin loci that encode the antigen receptor. To elucidate the role of microRNAs (miRNAs) in the orchestration of B cell development, we ablated all miRNAs at the earliest stage of B cell development by conditionally targeting the enzymes critical for RNAi in early B cell precursors. Absence of any one of these enzymes led to a block at the pro- to pre-B cell transition due to increased apoptosis and a failure of pre-B cells to proliferate. Expression of a Bcl2 transgene allowed for partial rescue of B cell development, however, the majority of the rescued B cells had low surface immunoglobulin expression with evidence of ongoing light chain editing. Our analysis revealed that miRNAs are critical for the regulation of the PTEN-AKT-FOXO1 pathway that in turn controls Rag expression during B cell development.