Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(13): e202315726, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38329885

RESUMO

We have developed a photochemical protecting group that enables wavelength selective uncaging using green versus violet light. Change of the exocyclic oxygen of the laser dye coumarin-102 to sulfur, gave thio-coumarin-102, a new chromophore with an absorption ratio at 503/402 nm of 37. Photolysis of thio-coumarin-102 caged γ-aminobutyric acid was found to be highly wavelength selective on neurons, with normalized electrical responses >100-fold higher in the green versus violet channel. When partnered with coumarin-102 caged glutamate, we could use whole cell violet and green irradiation to fire and block neuronal action potentials with complete orthogonality. Localized irradiation of different dendritic segments, each connected to a neuronal cell body, in concert with 3-dimenional Ca2+ imaging, revealed that such inputs could function independently. Chemical signaling in living cells always involves a complex balance of multiple pathways, use of (thio)-coumarin-102 caged compounds will enable arbitrarily timed flashes of green and violet light to interrogate two independent pathways simultaneously.


Assuntos
Luz Verde , Neurônios , Neurônios/metabolismo , Fotólise , Cumarínicos/química , Ácido Glutâmico/metabolismo
2.
J Neurosci ; 40(1): 81-88, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31630114

RESUMO

Without question, molecular biology drives modern neuroscience. The past 50 years has been nothing short of revolutionary as key findings have moved the field from correlation toward causation. Most obvious are the discoveries and strategies that have been used to build tools for visualizing circuits, measuring activity, and regulating behavior. Less flashy, but arguably as important are the myriad investigations uncovering the actions of single molecules, macromolecular structures, and integrated machines that serve as the basis for constructing cellular and signaling pathways identified in wide-scale gene or RNA studies and for feeding data into informational networks used in systems biology. This review follows the pathways that were opened in neuroscience by major discoveries and set the stage for the next 50 years.


Assuntos
Biologia Molecular/história , Neurociências/história , Animais , Sistemas CRISPR-Cas , Exocitose , Regulação da Expressão Gênica , Técnicas de Transferência de Genes/história , Genes Reporter , História do Século XX , História do Século XXI , Humanos , Hibridização In Situ/história , Hibridização In Situ/métodos , Microscopia/história , Microscopia/métodos , Biologia Molecular/métodos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Domínios PDZ , Reação em Cadeia da Polimerase/história , Engenharia de Proteínas/história , RNA/genética , Proteínas Recombinantes , Análise de Sequência de DNA/história , Análise de Sequência de DNA/métodos
3.
Proc Natl Acad Sci U S A ; 120(33): e2309992120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37531376
4.
J Neurophysiol ; 123(6): 2382-2389, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374202

RESUMO

Parkinson's disease (PD) risk is increased by stress and certain gene mutations, including the most prevalent PD-linked mutation LRRK2-G2019S. Both PD and stress increase risk for psychiatric symptoms, yet it is unclear how PD-risk genes alter neural circuitry in response to stress that may promote psychopathology. Here we show significant differences between adult G2019S knockin and wild-type (wt) mice in stress-induced behaviors, with an unexpected uncoupling of depression-like and hedonia-like responses in G2019S mice. Moreover, mutant spiny projection neurons in nucleus accumbens (NAc) lack an adaptive, stress-induced change in excitability displayed by wt neurons, and instead show stress-induced changes in synaptic properties that wt neurons lack. Some synaptic alterations in NAc are already evident early in postnatal life. Thus G2019S alters the magnitude and direction of behavioral responses to stress that may reflect unique modifications of adaptive plasticity in cells and circuits implicated in psychopathology in humans.NEW & NOTEWORTHY Depression is associated with Parkinson's disease (PD), and environmental stress is a risk factor for both. We investigated how LRRK2-G2019S PD mutation affects depression-like behaviors, synaptic function, and intrinsic neuronal excitability following stress. In response to stress, the mutation drives abnormal synaptic changes, prevents adaptive changes in intrinsic excitability, and leads to aberrant behaviors, thus defining new ways in which PD mutations derail adaptive plasticity in response to stress that may contribute to disease onset.


Assuntos
Comportamento Animal , Depressão , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Núcleo Accumbens , Doença de Parkinson , Estresse Psicológico , Animais , Comportamento Animal/fisiologia , Depressão/etiologia , Depressão/genética , Depressão/fisiopatologia , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Núcleo Accumbens/fisiopatologia , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Estresse Psicológico/complicações , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia
5.
J Neurosci ; 38(45): 9700-9711, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30249796

RESUMO

The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is a prevalent cause of late-onset Parkinson's disease, producing psychiatric and motor symptoms, including depression, that are indistinguishable from sporadic cases. Here we tested how this mutation impacts depression-related behaviors and associated synaptic responses and plasticity in mice expressing a Lrrk2-G2019S knock-in mutation. Young adult male G2019S knock-in and wild-type mice were subjected to chronic social defeat stress (CSDS), a validated depression model, and other tests of anhedonia, anxiety, and motor learning. We found that G2019S mice were highly resilient to CSDS, failing to exhibit social avoidance compared to wild-type mice, many of which exhibited prominent social avoidance and were thus susceptible to CSDS. In the absence of CSDS, no behavioral differences between genotypes were found. Whole-cell recordings of spiny projection neurons (SPNs) in the nucleus accumbens revealed that glutamatergic synapses in G2019S mice lacked functional calcium-permeable AMPARs, and following CSDS, failed to accumulate inwardly rectifying AMPAR responses characteristic of susceptible mice. Based on this abnormal AMPAR response profile, we asked whether long-term potentiation (LTP) of corticostriatal synaptic strength was affected. We found that both D1 receptor (D1R)- and D2R-SPNs in G2019S mutants were unable to express LTP, with D2R-SPNs abnormally expressing long-term depression following an LTP-induction protocol. Thus, G2019S promotes resilience to chronic social stress in young adulthood, likely reflecting synapses constrained in their ability to undergo experience-dependent plasticity. These unexpected findings may indicate early adaptive coping mechanisms imparted by the G2019S mutation.SIGNIFICANCE STATEMENT The G2019S mutation in LRRK2 causes late-onset Parkinson's disease (PD). LRRK2 is highly expressed in striatal neurons throughout life, but it is unclear how mutant LRRK2 affects striatal neuron function and behaviors in young adulthood. We addressed this question using Lrrk2-G2019S knock-in mice. The data show that young adult G2019S mice were unusually resilient to a depression-like syndrome resulting from chronic social stress. Further, mutant striatal synapses were incapable of forms of synaptic plasticity normally accompanying depression-like behavior and important for supporting the full range of cognitive function. These data suggest that in humans, LRRK2 mutation may affect striatal circuit function in ways that alter normal responses to stress and could be relevant for treatment strategies for non-motor PD symptoms.


Assuntos
Relações Interpessoais , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação/genética , Plasticidade Neuronal/fisiologia , Doença de Parkinson/genética , Resiliência Psicológica , Estresse Psicológico/genética , Fatores Etários , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia
6.
Biochem Soc Trans ; 46(6): 1697-1705, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30514770

RESUMO

LRRK2 mutation is the most common inherited, autosomal dominant cause of Parkinson's disease (PD) and has also been observed in sporadic cases. Most mutations result in increased LRRK2 kinase activity. LRRK2 is highly expressed in brain regions that receive dense, convergent innervation by dopaminergic and glutamatergic axons, and its levels rise developmentally coincident with glutamatergic synapse formation. The onset and timing of expression suggests strongly that LRRK2 regulates the development, maturation and function of synapses. Several lines of data in mice show that LRRK2-G2019S, the most common LRRK2 mutation, produces an abnormal gain of pathological function that affects synaptic activity, spine morphology, persistent forms of synapse plasticity and behavioral responses to social stress. Effects of the mutation can be detected as early as the second week of postnatal development and can last or have consequences that extend into adulthood and occur in the absence of dopamine loss. These data suggest that the generation of neural circuits that support complex behaviors is modified by LRRK2-G2019S. Whether such alterations impart vulnerability to neurons directly or indirectly, they bring to the forefront the idea that neural circuits within which dopamine neurons eventually degenerate are assembled and utilized in ways that are distinct from circuits that lack this mutation and may contribute to non-motor symptoms observed in humans with PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/metabolismo , Animais , Humanos , Mutação/genética
7.
J Neurosci ; 36(5): 1564-76, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26843638

RESUMO

Copy number variations encompassing the gene encoding Cyfip1 have been associated with a variety of human diseases, including autism and schizophrenia. Here we show that juvenile mice hemizygous for Cyfip1 have altered presynaptic function, enhanced protein translation, and increased levels of F-actin. In developing hippocampus, reduced Cyfip1 levels serve to decrease paired pulse facilitation and increase miniature EPSC frequency without a change in amplitude. Higher-resolution examination shows these changes to be caused primarily by an increase in presynaptic terminal size and enhanced vesicle release probability. Short hairpin-mediated knockdown of Cyfip1 coupled with expression of mutant Cyfip1 proteins indicates that the presynaptic alterations are caused by dysregulation of the WAVE regulatory complex. Such dysregulation occurs downstream of Rac1 as acute exposure to Rac1 inhibitors rescues presynaptic responses in culture and in hippocampal slices. The data serve to highlight an early and essential role for Cyfip1 in the generation of normally functioning synapses and suggest a means by which changes in Cyfip1 levels could impact the generation of neural networks and contribute to abnormal and maladaptive behaviors. SIGNIFICANCE STATEMENT: Several developmental brain disorders have been associated with gene duplications and deletions that serve to increase or decrease levels of encoded proteins. Cyfip1 is one such protein, but the role it plays in brain development is poorly understood. We asked whether decreased Cyfip1 levels altered the function of developing synapses. The data show that synapses with reduced Cyfip1 are larger and release neurotransmitter more rapidly. These effects are due to Cyfip1's role in actin polymerization and are reversed by expression of a Cyfip1 mutant protein retaining actin regulatory function or by inhibiting Rac1. Thus, Cyfip1 has a more prominent early role regulating presynaptic activity during a stage of development when activity helps to define neural pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Hipocampo/embriologia , Hipocampo/crescimento & desenvolvimento , Terminações Pré-Sinápticas/fisiologia , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
8.
J Neurosci ; 36(27): 7128-41, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27383589

RESUMO

UNLABELLED: Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) can cause Parkinson's disease (PD), and the most common disease-associated mutation, G2019S, increases kinase activity. Because LRRK2 expression levels rise during synaptogenesis and are highest in dorsal striatal spiny projection neurons (SPNs), we tested the hypothesis that the LRRK2-G2019S mutation would alter development of excitatory synaptic networks in dorsal striatum. To circumvent experimental confounds associated with LRRK2 overexpression, we used mice expressing LRRK2-G2019S or D2017A (kinase-dead) knockin mutations. In whole-cell recordings, G2019S SPNs exhibited a fourfold increase in sEPSC frequency compared with wild-type SPNs in postnatal day 21 mice. Such heightened neural activity was increased similarly in direct- and indirect-pathway SPNs, and action potential-dependent activity was particularly elevated. Excitatory synaptic activity in D2017A SPNs was similar to wild type, indicating a selective effect of G2019S. Acute exposure to LRRK2 kinase inhibitors normalized activity, supporting that excessive neural activity in G2019S SPNs is mediated directly and is kinase dependent. Although dendritic arborization and densities of excitatory presynaptic terminals and postsynaptic dendritic spines in G2019S SPNs were similar to wild type, G2019S SPNs displayed larger spines that were matched functionally by a shift toward larger postsynaptic response amplitudes. Acutely isolating striatum from overlying neocortex normalized sEPSC frequency in G2019S mutants, supporting that abnormal corticostriatal activity is involved. These findings indicate that the G2019S mutation imparts a gain-of-abnormal function to SPN activity and morphology during a stage of development when activity can permanently modify circuit structure and function. SIGNIFICANCE STATEMENT: Mutations in the kinase domain of leucine-rich repeat kinase 2 (LRRK2) follow Parkinson's disease (PD) heritability. How such mutations affect brain function is poorly understood. LRRK2 expression levels rise after birth at a time when synapses are forming and are highest in dorsal striatum, suggesting that LRRK2 regulates development of striatal circuits. During a period of postnatal development when activity plays a large role in permanently shaping neural circuits, our data show how the most common PD-causing LRRK2 mutation dramatically alters excitatory synaptic activity and the shape of postsynaptic structures in striatum. These findings provide new insight into early functional and structural aberrations in striatal connectivity that may predispose striatal circuitry to both motor and nonmotor dysfunction later in life.


Assuntos
Corpo Estriado/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação/genética , Neurônios/fisiologia , Doença de Parkinson/genética , Animais , Animais Recém-Nascidos , Corpo Estriado/fisiopatologia , Dendritos/patologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Doença de Parkinson/patologia , Técnicas de Patch-Clamp , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
9.
Proc Natl Acad Sci U S A ; 111(45): 16130-5, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25349423

RESUMO

Genetic evidence suggests cell-type-specific functions for certain nucleoporins, and gene expression profiling has revealed that nucleoporin p62 (NUP62) transcripts are decreased in the prefrontal cortex of major depressives. Chronic stress, which can precipitate depression, induces changes in the architecture and plasticity of apical dendrites that are particularly evident in the CA3 region of the hippocampus. Genetically targeted translating ribosome affinity purification revealed a selective reduction in translated Nup62 transcripts in CA3 of chronically stressed mice, and the Nup62 protein content of nuclei extracted from whole hippocampus was found to be decreased in chronically stressed rats. In cultured cells, phosphorylation of a FAK/proline-rich tyrosine kinase 2 (PYK2) consensus site in the alpha-helical domain of NUP62 (human Y422) is shown to be associated with shedding of NUP62 from the nuclear pore complex (NPC) and/or retention of NUP62 in the cytoplasm. Increased levels of phospho-Y425 Nup62 were observed in cytoplasmic fractions of hippocampi from chronically stressed rats, and immunofluorescence microscopy revealed redistribution of activated Pyk2 to the perinuclear region of stressed pyramidal neurons. Depletion of Nup62 from cultured embryonic day 18 rat hippocampal and cortical neurons resulted in simplification and retraction of dendritic arbors, without disruption of axon initial segment integrity. Thus, at least two types of mechanisms--one affecting expression and the other association with the NPC--could contribute to loss of NUP62 from CA3 pyramidal neurons during chronic stress. Their combined actions may account for the enhanced responsiveness of CA3 apical dendrites to chronic stress and may either be pathogenic or serve to protect CA3 neurons from permanent damage.


Assuntos
Região CA3 Hipocampal/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Glicoproteínas de Membrana/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Células Piramidais/metabolismo , Estresse Psicológico/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Região CA3 Hipocampal/patologia , Doença Crônica , Dendritos/metabolismo , Dendritos/patologia , Quinase 2 de Adesão Focal/genética , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Células Piramidais/patologia , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/genética , Estresse Psicológico/patologia
10.
Proc Natl Acad Sci U S A ; 111(38): 13978-83, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201975

RESUMO

Abnormal cortical circuits underlie some cognitive and psychiatric disorders, yet the molecular signals that generate normal cortical networks remain poorly understood. Semaphorin 7A (Sema7A) is an atypical member of the semaphorin family that is GPI-linked, expressed principally postnatally, and enriched in sensory cortex. Significantly, SEMA7A is deleted in individuals with 15q24 microdeletion syndrome, characterized by developmental delay, autism, and sensory perceptual deficits. We studied the role that Sema7A plays in establishing functional cortical circuitry in mouse somatosensory barrel cortex. We found that Sema7A is expressed in spiny stellate cells and GABAergic interneurons and that its absence disrupts barrel cytoarchitecture, reduces asymmetrical orientation of spiny stellate cell dendrites, and functionally impairs thalamocortically evoked synaptic responses, with reduced feed-forward GABAergic inhibition. These data identify Sema7A as a regulator of thalamocortical and local circuit development in layer 4 and provide a molecular handle that can be used to explore the coordinated generation of excitatory and inhibitory cortical circuits.


Assuntos
Antígenos CD/metabolismo , Potenciais Evocados/fisiologia , Rede Nervosa/metabolismo , Semaforinas/metabolismo , Córtex Somatossensorial/metabolismo , Transmissão Sináptica/fisiologia , Animais , Antígenos CD/genética , Dendritos/metabolismo , Camundongos , Camundongos Knockout , Rede Nervosa/citologia , Ratos , Ratos Sprague-Dawley , Semaforinas/genética , Córtex Somatossensorial/citologia
11.
FASEB J ; 28(5): 2120-33, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24497580

RESUMO

Secretion of proteins and neurotransmitters from large dense core vesicles (LDCVs) is a highly regulated process. Adrenal LDCV formation involves the granin proteins chromogranin A (CgA) and chromogranin B (CgB); CgA- and CgB-derived peptides regulate catecholamine levels and blood pressure. We investigated function of the granin VGF (nonacronymic) in LDCV formation and the regulation of catecholamine levels and blood pressure. Expression of exogenous VGF in nonendocrine NIH 3T3 fibroblasts resulted in the formation of LDCV-like structures and depolarization-induced VGF secretion. Analysis of germline VGF-knockout mouse adrenal medulla revealed decreased LDCV size in noradrenergic chromaffin cells, increased adrenal norepinephrine and epinephrine content and circulating plasma epinephrine, and decreased adrenal CgB. These neurochemical changes in VGF-knockout mice were associated with hypertension. Germline knock-in of human VGF1-615 into the mouse Vgf locus rescued the hypertensive knockout phenotype, while knock-in of a truncated human VGF1-524 that lacks several C-terminal peptides, including TLQP-21, resulted in a small but significant increase in systolic blood pressure compared to hVGF1-615 mice. Finally, acute and chronic administration of the VGF-derived peptide TLQP-21 to rodents decreased blood pressure. Our studies establish a role for VGF in adrenal LDCV formation and the regulation of catecholamine levels and blood pressure.


Assuntos
Pressão Sanguínea , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Vesículas Secretórias/metabolismo , Medula Suprarrenal/metabolismo , Angiotensina Amida/sangue , Animais , Células Cromafins/metabolismo , Cromogranina A/metabolismo , Citoplasma/metabolismo , Epinefrina/sangue , Técnicas de Introdução de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Fatores de Crescimento Neural , Neurotransmissores/metabolismo , Fragmentos de Peptídeos/metabolismo , Fenótipo
12.
Hippocampus ; 24(8): 943-962, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24753442

RESUMO

N-Cadherin and ß-catenin form a transsynaptic adhesion complex required for spine and synapse development. In adulthood, N-cadherin mediates persistent synaptic plasticity, but whether the role of N-cadherin at mature synapses is similar to that at developing synapses is unclear. To address this, we conditionally ablated N-cadherin from excitatory forebrain synapses in mice starting in late postnatal life and examined hippocampal structure and function in adulthood. In the absence of N-cadherin, ß-catenin levels were reduced, but numbers of excitatory synapses were unchanged, and there was no impact on number or shape of dendrites or spines. However, the composition of synaptic molecules was altered. Levels of GluA1 and its scaffolding protein PSD95 were diminished and the density of immunolabeled puncta was decreased, without effects on other glutamate receptors and their scaffolding proteins. Additionally, loss of N-cadherin at excitatory synapses triggered increases in the density of markers for inhibitory synapses and decreased severity of hippocampal seizures. Finally, adult mutant mice were profoundly impaired in hippocampal-dependent memory for spatial episodes. These results demonstrate a novel function for the N-cadherin/ß-catenin complex in regulating ionotropic receptor composition of excitatory synapses, an appropriate balance of excitatory and inhibitory synaptic proteins and the maintenance of neural circuitry necessary to generate flexible yet persistent cognitive and synaptic function.


Assuntos
Caderinas/deficiência , Hipocampo/fisiopatologia , Inibição Neural/fisiologia , Sinapses/fisiologia , beta Catenina/metabolismo , Animais , Caderinas/genética , Dendritos/fisiologia , Espinhas Dendríticas/fisiologia , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases/metabolismo , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Ácido Caínico , Masculino , Proteínas de Membrana/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/fisiologia , Prosencéfalo/citologia , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/fisiopatologia , Receptores de AMPA/metabolismo , Convulsões/fisiopatologia , Memória Espacial/fisiologia
13.
Biochem J ; 453(1): 101-13, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23560750

RESUMO

Missense mutations in LRRK2 (leucine-rich repeat kinase 2) are a major cause of PD (Parkinson's disease). Several antibodies against LRRK2 have been developed, but results using these polyclonal antibodies have varied widely leading to conflicting conclusions. To address this challenge, the Michael J. Fox Foundation for Parkinson's Research generated a number of monoclonal antibodies targeting epitopes across the LRRK2 protein. In the present paper, we report optimized protocols and results for ten monoclonal antibodies for immunoblotting, immunohistochemistry, immunoprecipitation and kinase activity assays, in rat, mouse and human brain tissue. Several efficacious antibodies were identified, but results demonstrate that the mouse monoclonal N241A/34 is suitable for most applications, with the best overall rabbit monoclonal antibody being c41-2. These antibodies produced a dominant band of the expected size via immunoblotting and a lack of labelling in tissue derived from LRRK2-knockout animals under optimized conditions. A significant proportion of LRRK2 protein localizes to insoluble fractions and no evidence of truncated LRRK2 protein was detected in any fraction from rodent or human tissues. An assay was developed for the robust detection of LRRK2 kinase activity directly from frozen mouse and human brain tissue, but precipitous declines in activity were observed that corresponded to increasing post-mortem intervals and processing times. Finally, we demonstrate the highest levels of brain-localized LRRK2 in the striatum, but note differential expression patterns between rat and mouse in both striatum and cortex. Anti-LRRK2 monoclonal antibodies that are unlimited in availability together with the proposed standardized protocols should aid in the definition of LRRK2 function in both health and disease.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Proteínas Serina-Treonina Quinases/imunologia , Animais , Encéfalo/enzimologia , Linhagem Celular , Mapeamento de Epitopos , Humanos , Immunoblotting , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Camundongos , Camundongos Knockout , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Coelhos , Ratos
14.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895277

RESUMO

Anxiety is a psychiatric non-motor symptom of Parkinson's that can appear in the prodromal period, prior to significant loss of brainstem dopamine neurons and motor symptoms. Parkinson's-related anxiety affects females more than males, despite the greater prevalence of Parkinson's in males. How stress, anxiety and Parkinson's are related and the basis for a sex-specific impact of stress in Parkinson's are not clear. We addressed this using young adult male and female mice carrying a G2019S knockin mutation of leucine-rich repeat kinase 2 ( Lrrk2 G2019S ) and Lrrk2 WT control mice. In humans, LRRK2 G2019S significantly elevates the risk of late-onset Parkinson's. To assess within-sex differences between Lrrk2 G2019S and control mice in stress-induced anxiety-like behaviors in young adulthood, we used a within-subject design whereby Lrrk2 G2019S and Lrrk2 WT control mice underwent tests of anxiety-like behaviors before (baseline) and following a 28 day (d) variable stress paradigm. There were no differences in behavioral measures between genotypes in males or females at baseline, indicating that the mutation alone does not produce anxiety-like responses. Following chronic stress, male Lrrk2 G2019S mice were affected similarly to male wildtypes except for novelty-suppressed feeding, where stress had no impact on Lrrk2 G2019S mice while significantly increasing latency to feed in Lrrk2 WT control mice. Female Lrrk2 G2019S mice were impacted by chronic stress similarly to wildtype females across all behavioral measures. Subsequent post-stress analyses compared cFos immunolabeling-based cellular activity patterns across several stress-relevant brain regions. The density of cFos-activated neurons across brain regions in both male and female Lrrk2 G2019S mice was generally lower compared to stressed Lrrk2 WT mice, except for the nucleus accumbens of male Lrrk2 G2019S mice, where cFos-labeled cell density was significantly higher than all other groups. Together, these data suggest that the Lrrk2 G2019S mutation differentially impacts anxiety-like behavioral responses to chronic stress in males and females that may reflect sex-specific adaptations observed in circuit activation patterns in stress-related brain regions.

15.
J Biol Chem ; 287(53): 44301-19, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23129762

RESUMO

Serotonin and glutamate G protein-coupled receptor (GPCR) neurotransmission affects cognition and perception in humans and rodents. GPCRs are capable of forming heteromeric complexes that differentially alter cell signaling, but the role of this structural arrangement in modulating behavior remains unknown. Here, we identified three residues located at the intracellular end of transmembrane domain four that are necessary for the metabotropic glutamate 2 (mGlu2) receptor to be assembled as a GPCR heteromer with the serotonin 5-hydroxytryptamine 2A (5-HT(2A)) receptor in the mouse frontal cortex. Substitution of these residues (Ala-677(4.40), Ala-681(4.44), and Ala-685(4.48)) leads to absence of 5-HT(2A)·mGlu2 receptor complex formation, an effect that is associated with a decrease in their heteromeric ligand binding interaction. Disruption of heteromeric expression with mGlu2 attenuates the psychosis-like effects induced in mice by hallucinogenic 5-HT(2A) agonists. Furthermore, the ligand binding interaction between the components of the 5-HT(2A)·mGlu2 receptor heterocomplex is up-regulated in the frontal cortex of schizophrenic subjects as compared with controls. Together, these findings provide structural evidence for the unique behavioral function of a GPCR heteromer.


Assuntos
Receptor 5-HT2A de Serotonina/metabolismo , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/metabolismo , Esquizofrenia/metabolismo , Psicologia do Esquizofrênico , Adulto , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Comportamento , Estudos de Casos e Controles , Dimerização , Feminino , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Pessoa de Meia-Idade , Dados de Sequência Molecular , Ligação Proteica , Receptor 5-HT2A de Serotonina/genética , Receptores de Glutamato Metabotrópico/genética , Esquizofrenia/genética , Alinhamento de Sequência , Adulto Jovem
16.
Anesthesiology ; 118(4): 825-33, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23364597

RESUMO

BACKGROUND: The finding that exposure to general anesthetics (GAs) in childhood may increase rates of learning disabilities has raised a concern that anesthetics may interfere with brain development. The generation of neuronal circuits, a complex process in which axons follow guidance cues to dendritic targets, is an unexplored potential target for this type of toxicity. METHODS: GA exposures were conducted in developing neocortical neurons in culture and in early postnatal neocortical slices overlaid with fluorescently labeled neurons. Axon targeting, growth cone collapse, and axon branching were measured using quantitative fluorescence microscopy. RESULTS: Isoflurane exposure causes errors in Semaphorin-3A-dependent axon targeting (n = 77 axons) and a disruption of the response of axonal growth cones to Semaphorin-3A (n = 2,358 growth cones). This effect occurs at clinically relevant anesthetic doses of numerous GAs with allosteric activity at γ-aminobutyric acid type A receptors, and it was reproduced with a selective agonist. Isoflurane also inhibits growth cone collapse induced by Netrin-1, but does not interfere branch induction by Netrin-1. Insensitivity to guidance cues caused by isoflurane is seen acutely in growth cones in dissociated culture, and errors in axon targeting in brain slice culture occur at the earliest point at which correct targeting is observed in controls. CONCLUSIONS: These results demonstrate a generalized inhibitory effect of GAs on repulsive growth cone guidance in the developing neocortex that may occur via a γ-aminobutyric acid type A receptor mechanism. The finding that GAs interfere with axon guidance, and thus potentially with circuit formation, represents a novel form of anesthesia neurotoxicity in brain development.


Assuntos
Anestésicos Inalatórios/farmacologia , Axônios/efeitos dos fármacos , Isoflurano/farmacologia , Neurônios/efeitos dos fármacos , Receptores de GABA/efeitos dos fármacos , Análise de Variância , Anestesia Geral/métodos , Animais , Encéfalo/efeitos dos fármacos , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Cones de Crescimento/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Fatores de Crescimento Neural/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
17.
Neuroscientist ; 29(1): 97-116, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-33966533

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder that has been recognized for over 200 years by its clinically dominant motor system impairment. There are prominent non-motor symptoms as well, and among these, psychiatric symptoms of depression and anxiety and cognitive impairment are common and can appear earlier than motor symptoms. Although the neurobiology underlying these particular PD-associated non-motor symptoms is not completely understood, the identification of PARK genes that contribute to hereditary and sporadic PD has enabled genetic models in animals that, in turn, have fostered ever deepening analyses of cells, synapses, circuits, and behaviors relevant to non-motor psychiatric and cognitive symptoms of human PD. Moreover, while it has long been recognized that inflammation is a prominent component of PD, recent studies demonstrate that brain-immune signaling crosstalk has significant modulatory effects on brain cell and synaptic function in the context of psychiatric symptoms. This review provides a focused update on such progress in understanding the neurobiology of PD-related non-motor psychiatric and cognitive symptoms.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Animais , Humanos , Doença de Parkinson/genética , Disfunção Cognitiva/etiologia , Encéfalo , Ansiedade , Transdução de Sinais
18.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37905106

RESUMO

Parkinson's (PD) is a multi-factorial disease that affects multiple brain systems and circuits. While defined by motor symptoms caused by degeneration of brainstem dopamine neurons, debilitating non-motor abnormalities in fronto-striatal based cognitive function are common, appear early and are initially independent of dopamine. Young adult mice expressing the PD-associated G2019S missense mutation in Lrrk2 also exhibit deficits in fronto-striatal-based cognitive tasks. In mice and humans, cognitive functions require dynamic adjustments in glutamatergic synapse strength through cell-surface trafficking of AMPA-type glutamate receptors (AMPARs), but it is unknown how LRRK2 mutation impacts dynamic features of AMPAR trafficking in striatal projection neurons (SPNs). Here, we used Lrrk2 G2019S knockin mice to show that surface AMPAR subunit stoichiometry is altered biochemically and functionally in mutant SPNs to favor incorporation of GluA1 over GluA2. GluA1-containing AMPARs were resistant to internalization from the cell surface, leaving an excessive accumulation of GluA1 on the surface within and outside synapses. This negatively impacted trafficking dynamics that normally support synapse strengthening, as GluA1-containing AMPARs failed to increase at synapses in response to a potentiating stimulus and showed significantly reduced surface mobility. Surface GluA2-containing AMPARs were expressed at normal levels in synapses, indicating subunit-selective impairment. Abnormal surface accumulation of GluA1 was independent of PKA activity and was limited to D 1 R SPNs. Since LRRK2 mutation is thought to be part of a common PD pathogenic pathway, our data suggest that sustained, striatal cell-type specific changes in AMPAR composition and trafficking contribute to cognitive or other impairments associated with PD. SIGNIFICANCE STATEMENT: Mutations in LRRK2 are common genetic risks for PD. Lrrk2 G2019S mice fail to exhibit long-term potentiation at corticostriatal synapses and show significant deficits in frontal-striatal based cognitive tasks. While LRRK2 has been implicated generally in protein trafficking, whether G2019S derails AMPAR trafficking at synapses on striatal neurons (SPNs) is unknown. We show that surface GluA1-AMPARs fail to internalize and instead accumulate excessively within and outside synapses. This effect is selective to D 1 R SPNs and negatively impacts synapse strengthening as GluA1-AMPARs fail to increase at the surface in response to potentiation and show limited surface mobility. Thus, LRRK2-G2019S narrows the effective range of plasticity mechanisms, supporting the idea that cognitive symptoms reflect an imbalance in AMPAR trafficking mechanisms within cell-type specific projections.

19.
bioRxiv ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993639

RESUMO

Rational decision making is grounded in learning to associate actions with outcomes, a process that depends on projections from prefrontal cortex to dorsomedial striatum. Symptoms associated with a variety of human pathological conditions ranging from schizophrenia and autism to Huntington's and Parkinson's disease point toward functional deficits in this projection, but its development is not well understood, making it difficult to investigate how perturbations in development of this circuitry could contribute to pathophysiology. We applied a novel strategy based on Hotspot Analysis to assess the developmental progression of anatomical positioning of prefrontal cortex to striatal projections. Corticostriatal axonal territories established at P7 expand in concert with striatal growth but remain largely unchanged in positioning through adulthood, indicating they are generated by directed, targeted growth and not modified extensively by postnatal experience. Consistent with these findings, corticostriatal synaptogenesis increased steadily from P7 to P56, with no evidence for widescale pruning. As corticostriatal synapse density increased over late postnatal ages, the strength of evoked PFC input onto dorsomedial striatal projection neurons also increased, but spontaneous glutamatergic synaptic activity was stable. Based on its pattern of expression, we asked whether the adhesion protein, Cdh8, influenced this progression. In mice lacking Cdh8 in PFC corticostriatal projection neurons, axon terminal fields in dorsal striatum shifted ventrally. Corticostriatal synaptogenesis was unimpeded, but spontaneous EPSC frequency declined and mice failed to learn to associate an action with an outcome. Collectively these findings show that corticostriatal axons grow to their target zone and are restrained from an early age, do not undergo postnatal synapse pruning as the most dominant models predict, and that a relatively modest shift in terminal arbor positioning and synapse function has an outsized, negative impact on corticostriatal-dependent behavior.

20.
iScience ; 26(10): 108002, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37854688

RESUMO

Action-outcome associations depend on prefrontal cortex (PFC) projections to the dorsal striatum. To assess how these projections form, we measured PFC axon patterning, synapse formation, and functional maturation in the postnatally developing mouse striatum. Using Hotspot analysis, we show that PFC axons form an adult-like pattern of clustered terminations in the first postnatal week that remains largely stable thereafter. PFC-striatal synaptic strength is adult-like by P21, while excitatory synapse density increases until adulthood. We then tested how the targeted deletion of a candidate adhesion/guidance protein, Cadherin-8 (Cdh8), from corticostriatal neurons regulates pathway development. Mutant mice showed diminished PFC axon targeting and reduced spontaneous glutamatergic synaptic activity in the dorsal striatum. They also exhibited impaired behavioral performance in action-outcome learning. The data show that PFC-striatal axons form striatal territories through an early, directed growth model and they highlight essential contributions of Cdh8 to the anatomical and functional features critical for the formation of action-outcome associations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA