Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nature ; 593(7857): 67-73, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953412

RESUMO

Transition metal (oxy)hydroxides are promising electrocatalysts for the oxygen evolution reaction1-3. The properties of these materials evolve dynamically and heterogeneously4 with applied voltage through ion insertion redox reactions, converting materials that are inactive under open circuit conditions into active electrocatalysts during operation5. The catalytic state is thus inherently far from equilibrium, which complicates its direct observation. Here, using a suite of correlative operando scanning probe and X-ray microscopy techniques, we establish a link between the oxygen evolution activity and the local operational chemical, physical and electronic nanoscale structure of single-crystalline ß-Co(OH)2 platelet particles. At pre-catalytic voltages, the particles swell to form an α-CoO2H1.5·0.5H2O-like structure-produced through hydroxide intercalation-in which the oxidation state of cobalt is +2.5. Upon increasing the voltage to drive oxygen evolution, interlayer water and protons de-intercalate to form contracted ß-CoOOH particles that contain Co3+ species. Although these transformations manifest heterogeneously through the bulk of the particles, the electrochemical current is primarily restricted to their edge facets. The observed Tafel behaviour is correlated with the local concentration of Co3+ at these reactive edge sites, demonstrating the link between bulk ion-insertion and surface catalytic activity.

2.
Analyst ; 149(9): 2542-2555, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38632960

RESUMO

Scanning electrochemical cell microscopy (SECCM) has emerged as a transformative technology for electrochemical materials characterisation and the study of single entities, garnering global adoption by numerous research groups. While details on the instrumentation and operational principles of SECCM are readily available, the growing need for practical guidelines, troubleshooting strategies, and a systematic overview of applications and trends has become increasingly evident. This tutorial review addresses this gap by offering a comprehensive guide to the practical application of SECCM. The review begins with a discussion of recent developments and trends in the application of SECCM, before providing systematic approaches to (and the associated troubleshooting associated with) instrumental set up, probe fabrication, substrate preparation and the deployment of environmental (e.g., atmosphere and humidity) control. Serving as an invaluable resource, this tutorial review aims to equip researchers and practitioners entering the field with a comprehensive guide to essential considerations for conducting successful SECCM experiments.

3.
Acc Chem Res ; 55(3): 241-251, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020363

RESUMO

ConspectusElectrochemical reduction of the greenhouse gas CO2 offers prospects for the sustainable generation of fuels and industrially useful chemicals when powered by renewable electricity. However, this electrochemical process requires the use of highly stable, selective, and active catalysts. The development of such catalysts should be based on a detailed kinetic and mechanistic understanding of the electrochemical CO2 reduction reaction (eCO2RR), ideally through the resolution of active catalytic sites in both time (i.e., temporally) and space (i.e., spatially). In this Account, we highlight two advanced spatiotemporal voltammetric techniques for electrocatalytic studies and describe the considerable insights they provide on the eCO2RR. First, Fourier transformed large-amplitude alternating current voltammetry (FT ac voltammetry), as applied by the Monash Electrochemistry Group, enables the resolution of rapid underlying electron-transfer processes in complex reactions, free from competing processes, such as the background double-layer charging current, slow catalytic reactions, and solvent/electrolyte electrolysis, which often mask conventional voltammetric measurements of the eCO2RR. Crucially, FT ac voltammetry allows details of the catalytically active sites or the rate-determining step to be revealed under catalytic turnover conditions. This is well illustrated in investigations of the eCO2RR catalyzed by Bi where formate is the main product. Second, developments in scanning electrochemical cell microscopy (SECCM) by the Warwick Electrochemistry and Interfaces Group provide powerful methods for obtaining high-resolution activity maps and potentiodynamic movies of the heterogeneous surface of a catalyst. For example, by coupling SECCM data with colocated microscopy from electron backscatter diffraction (EBSD) or atomic force microscopy, it is possible to develop compelling correlations of (precatalyst) structure-activity at the nanoscale level. This correlative electrochemical multimicroscopy strategy allows the catalytically more active region of a catalyst, such as the edge plane of two-dimensional materials and the grain boundaries between facets in a polycrystalline metal, to be highlighted. The attributes of SECCM-EBSD are well-illustrated by detailed studies of the eCO2RR on polycrystalline gold, where carbon monoxide is the main product. Comparing SECCM maps and movies with EBSD images of the same region reveals unambiguously that the eCO2RR is enhanced at surface-terminating dislocations, which accumulate at grain boundaries and slip bands. Both FT ac voltammetry and SECCM techniques greatly enhance our understanding of the eCO2RR, significantly boosting the electrochemical toolbox and the information available for the development and testing of theoretical models and rational catalyst design. In the future, it may be possible to further enhance insights provided by both techniques through their integration with in situ and in operando spectroscopy and microscopy methods.

4.
Anal Chem ; 92(17): 11673-11680, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32521997

RESUMO

Many applications in modern electrochemistry, notably electrosynthesis and energy storage/conversion take advantage of the "tunable" physicochemical properties (e.g., proton availability and/or electrochemical stability) of nonaqueous (e.g., aprotic) electrolyte media. This work develops general guidelines pertaining to the use of scanning electrochemical cell microscopy (SECCM) in aprotic solvent electrolyte media to address contemporary structure-electrochemical activity problems. Using the simple outer-sphere Fc0/+ process (Fc = ferrocene) as a model system, high boiling point (low vapor pressure) solvents give rise to highly robust and reproducible electrochemistry, whereas volatile (low boiling point) solvents need to be mixed with suitable low melting point supporting electrolytes (e.g., ionic liquids) or high boiling point solvents to avoid complications associated with salt precipitation/crystallization on the scanning (minutes to hours) time scale. When applied to perform microfabrication-specifically the electrosynthesis of the conductive polymer, polypyrrole-the optimized SECCM set up produces highly reproducible arrays of synthesized (electrodeposited) material on a commensurate scale to the employed pipet probe. Applying SECCM to map electrocatalytic activity-specifically the electro-oxidation of iodide at polycrystalline platinum-reveals unique (i.e., structure-dependent) patterns of surface activity, with grains of specific crystallographic orientation, grain boundaries and areas of high local surface misorientation identified as potential electrocatalytic "hot spots". The work herein further cements SECCM as a premier technique for structure-function-activity studies in (electro)materials science and will open up exciting new possibilities through the use of aprotic solvents for rational analysis/design in electrosynthesis, microfabrication, electrochemical energy storage/conversion, and beyond.

5.
Anal Chem ; 92(18): 12509-12517, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786472

RESUMO

Electrochemical impedance spectroscopy (EIS) is a versatile tool for electrochemistry, particularly when applied locally to reveal the properties and dynamics of heterogeneous interfaces. A new method to generate local electrochemical impedance spectra is outlined, by applying a harmonic bias between a quasi-reference counter electrode (QRCE) placed in a nanopipet tip of a scanning ion conductance microscope (SICM) and a conductive (working electrode) substrate (two-electrode setup). The AC frequency can be tuned so that the magnitude of the impedance is sensitive to the tip-to-substrate distance, whereas the phase angle is broadly defined by the local capacitive response of the electrical double layer (EDL) of the working electrode. This development enables the surface topography and the local capacitance to be sensed reliably, and separately, in a single measurement. Further, self-referencing the probe impedance near the surface to that in the bulk solution allows the local capacitive response of the working electrode substrate in the overall AC signal to be determined, establishing a quantitative footing for the methodology. The spatial resolution of AC-SICM is an order of magnitude larger than the tip size (100 nm radius), for the studies herein, due to frequency dispersion. Comprehensive finite element method (FEM) modeling is undertaken to optimize the experimental conditions and minimize the experimental artifacts originating from the frequency dispersion phenomenon, and provides an avenue to explore the means by which the spatial resolution could be further improved.

6.
J Am Chem Soc ; 141(6): 2179-2193, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30485739

RESUMO

Nanostructured electrochemical interfaces (electrodes) are found in diverse applications ranging from electrocatalysis and energy storage to biomedical and environmental sensing. These functional materials, which possess compositional and structural heterogeneity over a wide range of length scales, are usually characterized by classical macroscopic or "bulk" electrochemical techniques that are not well-suited to analyzing the nonuniform fluxes that govern the electrochemical response at complex interfaces. In this Perspective, we highlight new directions to studying fundamental electrochemical and electrocatalytic phenomena, whereby nanoscale-resolved information on activity is related to electrode structure and properties colocated and at a commensurate scale by using complementary high-resolution microscopy techniques. This correlative electrochemical multimicroscopy strategy aims to unambiguously resolve structure and activity by identifying and characterizing the structural features that constitute an active surface, ultimately facilitating the rational design of functional electromaterials. The discussion encompasses high-resolution correlative structure-activity investigations at well-defined surfaces such as metal single crystals and layered materials, extended structurally/compositionally heterogeneous surfaces such as polycrystalline metals, and ensemble-type electrodes exemplified by nanoparticles on an electrode support surface. This Perspective provides a roadmap for next-generation studies in electrochemistry and electrocatalysis, advocating that complex electrode surfaces and interfaces be broken down and studied as a set of simpler "single entities" (e.g., steps, terraces, defects, crystal facets, grain boundaries, single particles), from which the resulting nanoscale understanding of reactivity can be used to create rational models, underpinned by theory and surface physics, that are self-consistent across broader length scales and time scales.

7.
Anal Chem ; 91(23): 14854-14859, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31674764

RESUMO

As part of the revolution in electrochemical nanoscience, there is growing interest in using electrochemistry to create nanostructured materials and to assess properties at the nanoscale. Herein, we present a platform that combines scanning electrochemical cell microscopy with ex situ scanning transmission electron microscopy to allow the ready creation of an array of nanostructures coupled with atomic-scale analysis. As an illustrative example, we explore the electrodeposition of Pt at carbon-coated transmission electron microscopy (TEM) grid supports, where in a single high-throughput experiment it is shown that Pt nanoparticle (PtNP) density increases and size polydispersity decreases with increasing overpotential (i.e., driving force). Furthermore, the coexistence of a range of nanostructures, from single atoms to aggregates of crystalline PtNPs, during the early stages of electrochemical nucleation and growth supports a nonclassical aggregative growth mechanism. Beyond this exemplary system, the presented correlative electrochemistry-microscopy approach is generally applicable to solve ubiquitous structure-function problems in electrochemical science and beyond, positioning it as a powerful platform for the rational design of functional nanomaterials.

8.
Anal Chem ; 91(14): 9229-9237, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31251561

RESUMO

Scanning electrochemical cell microscopy (SECCM) has been applied for nanoscale (electro)activity mapping in a range of electrochemical systems but so far has almost exclusively been performed in controlled-potential (amperometric/voltammetric) modes. Herein, we consider the use of SECCM operated in a controlled-current (galvanostatic or chronopotentiometric) mode, to synchronously obtain spatially resolved electrode potential (i.e., electrochemical activity) and topographical "maps". This technique is first applied, as proof of concept, to study the electrochemically reversible [Ru(NH3)6]3+/2+ electron transfer process at a glassy carbon electrode surface, where the experimental data are in good agreement with well-established chronopotentiometric theory under quasi-radial diffusion conditions. The [Ru(NH3)6]3+/2+ process has also been imaged at "aged" highly ordered pyrolytic graphite (HOPG), where apparently enhanced electrochemical activity is measured at the edge plane relative to the basal plane surface, consistent with potentiostatic measurements. Finally, chronopotentiometric SECCM has been employed to benchmark a promising electrocatalytic system, the hydrogen evolution reaction (HER) at molybdenum disulfide (MoS2), where higher electrocatalytic activity (i.e., lower overpotential at a current density of 2 mA cm-2) is observed at the edge plane compared to the basal plane surface. These results are in excellent agreement with previous controlled-potential SECCM studies, confirming the viability of the technique and thereby opening up new possibilities for the use of chronopotentiometric methods for quantitative electroanalysis at the nanoscale, with promising applications in energy storage (battery) studies, electrocatalyst benchmarking, and corrosion research.

9.
Angew Chem Int Ed Engl ; 58(14): 4606-4611, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30724004

RESUMO

The redox activity (Li-ion intercalation/deintercalation) of a series of individual LiMn2 O4 particles of known geometry and (nano)structure, within an array, is determined using a correlative electrochemical microscopy strategy. Cyclic voltammetry (current-voltage curve, I-E) and galvanostatic charge/discharge (voltage-time curve, E-t) are applied at the single particle level, using scanning electrochemical cell microscopy (SECCM), together with co-location scanning electron microscopy that enables the corresponding particle size, morphology, crystallinity, and other factors to be visualized. This study identifies a wide spectrum of activity of nominally similar particles and highlights how subtle changes in particle form can greatly impact electrochemical properties. SECCM is well-suited for assessing single particles and constitutes a combinatorial method that will enable the rational design and optimization of battery electrode materials.

10.
Anal Chem ; 90(12): 7700-7707, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29808685

RESUMO

Nanoelectrochemistry is an important and growing branch of electrochemistry that encompasses a number of key research areas, including (electro)catalysis, energy storage, biomedical/environmental sensing, and electrochemical imaging. Nanoscale electrochemical measurements are often performed in confined environments over prolonged experimental time scales with nonisolated quasi-reference counter electrodes (QRCEs) in a simplified two-electrode format. Herein, we consider the stability of commonly used Ag/AgCl QRCEs, comprising an AgCl-coated wire, in a nanopipet configuration, which simulates the confined electrochemical cell arrangement commonly encountered in nanoelectrochemical systems. Ag/AgCl QRCEs possess a very stable reference potential even when used immediately after preparation and, when deployed in Cl- free electrolyte media (e.g., 0.1 M HClO4) in the scanning ion conductance microscopy (SICM) format, drift by only ca. 1 mV h-1 on the several hours time scale. Furthermore, contrary to some previous reports, when employed in a scanning electrochemical cell microscopy (SECCM) format (meniscus contact with a working electrode surface), Ag/AgCl QRCEs do not cause fouling of the surface (i.e., with soluble redox byproducts, such as Ag+) on at least the 6 h time scale, as long as suitable precautions with respect to electrode handling and placement within the nanopipet are observed. These experimental observations are validated through finite element method (FEM) simulations, which consider Ag+ transport within a nanopipet probe in the SECCM and SICM configurations. These results confirm that Ag/AgCl is a stable and robust QRCE in confined electrochemical environments, such as in nanopipets used in SICM, for nanopore measurements, for printing and patterning, and in SECCM, justifying the widespread use of this electrode in the field of nanoelectrochemistry and beyond.

11.
Faraday Discuss ; 210(0): 365-379, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29999075

RESUMO

Techniques in the scanning electrochemical probe microscopy (SEPM) family have shown great promise for resolving nanoscale structure-function (e.g., catalytic activity) at complex (electro)chemical interfaces, which is a long-term aspiration in (electro)materials science. In this work, we explore how a simple meniscus imaging probe, based on an easily-fabricated, single-channeled nanopipette (inner diameter ≈ 30 nm) can be deployed in the scanning electrochemical cell microscopy (SECCM) platform as a fast, versatile and robust method for the direct, synchronous electrochemical/topographical imaging of electrocatalytic materials at the nanoscale. Topographical and voltammetric data are acquired synchronously at a spatial resolution of 50 nm to construct maps that resolve particular surface features on the sub-10 nm scale and create electrochemical activity movies composed of hundreds of potential-resolved images on the minutes timescale. Using the hydrogen evolution reaction (HER) at molybdenite (MoS2) as an exemplar system, the experimental parameters critical to achieving a robust scanning protocol (e.g., approach voltage, reference potential calibration) with high resolution (e.g., hopping distance) and optimal scan times (e.g., voltammetric scan rate, approach rate etc.) are considered and discussed. Furthermore, sub-nanoentity reactivity mapping is demonstrated with glassy carbon (GC) supported single-crystalline {111}-oriented two-dimensional Au nanocrystals (AuNCs), which exhibit uniform catalytic activity at the single-entity and sub-single entity level. The approach outlined herein signposts a future in (electro)materials science in which the activity of electroactive nanomaterials can be viewed directly and related to structure through electrochemical movies, revealing active sites unambiguously.

12.
Angew Chem Int Ed Engl ; 57(15): 4093-4097, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29377499

RESUMO

In order to design more powerful electrocatalysts, developing our understanding of the role of the surface structure and composition of widely abundant bulk materials is crucial. This is particularly true in the search for alternative hydrogen evolution reaction (HER) catalysts to replace platinum. We report scanning electrochemical cell microscopy (SECCM) measurements of the (111)-crystal planes of Fe4.5 Ni4.5 S8 , a highly active HER catalyst. In combination with structural characterization methods, we show that this technique can reveal differences in activity arising from even the slightest compositional changes. By probing electrochemical properties at the nanoscale, in conjunction with complementary structural information, novel design principles are revealed for application to rational material synthesis.

13.
J Am Chem Soc ; 139(46): 16813-16821, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29058886

RESUMO

Electrochemical interfaces used for sensing, (electro)catalysis, and energy storage are usually nanostructured to expose particular surface sites, but probing the intrinsic activity of these sites is often beyond current experimental capability. Herein, it is demonstrated how a simple meniscus imaging probe of just 30 nm in size can be deployed for direct electrochemical and topographical imaging of electrocatalytic materials at the nanoscale. Spatially resolved topographical and electrochemical data are collected synchronously to create topographical images in which step-height features as small as 2 nm are easily resolved and potential-resolved electrochemical activity movies composed of hundreds of images are obtained in a matter of minutes. The technique has been benchmarked by investigating the hydrogen evolution reaction on molybdenum disulfide, where it is shown that the basal plane possesses uniform activity, while surface defects (i.e., few to multilayer step edges) give rise to a morphology-dependent (i.e., height-dependent) enhancement in catalytic activity. The technique was then used to investigate the electro-oxidation of hydrazine at the surface of electrodeposited Au nanoparticles (AuNPs) supported on glassy carbon, where subnanoentity (i.e., sub-AuNP) reactivity mapping has been demonstrated. We show, for the first time, that electrochemical reaction rates vary significantly across an individual AuNP surface and that these single entities cannot be considered as uniformly active. The work herein provides a road map for future studies in electrochemical science, in which the activity of nanostructured materials can be viewed as quantitative movies, readily obtained, to reveal active sites directly and unambiguously.

14.
J Am Chem Soc ; 138(39): 12755-12758, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27611725

RESUMO

Nanoparticle (NP) impacts on electrode surfaces has become an important method for analyzing the properties and activity of individual NPs, by either (i) electrocatalytic reactions or (ii) volumetric (dissolution) analyses. Using Au NPs as an exemplar system, this contribution shows that it is possible to detect surface oxide formation at individual NPs, which can occur on a rapid time scale (few µs). The charge associated with this "surface oxidation method" can be used for sizing (with results that are comparable to TEM) despite charges of only fC being measured. This platform further allows the role of surface oxides in electrocatalysis to be elucidated, with the time scale of oxide formation being controllable (i.e., "tunable") via the applied potential, as illustrated through studies of borohydride and hydrazine electro-oxidation. Finally, all of these studies are carried out on an oxide-covered Au substrate, which can be prepared and regenerated straightforwardly on an Au electrode, through the applied potential.

15.
Anal Chem ; 88(4): 2367-74, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26771276

RESUMO

Alternating current (ac) voltammetry provides access to faster electrode kinetics than direct current (dc) methods. However, difficulties in ac and other methods arise when the heterogeneous electron-transfer rate constant (k(0)) approaches the reversible limit, because the voltammetric characteristics become insensitive to electrode kinetics. Thus, in this near-reversible regime, even small uncertainties associated with bulk concentration (C), diffusion coefficient (D), electrode area (A), and uncompensated resistance (Ru) can lead to significant systematic error in the determination of k(0). In this study, we have introduced a kinetically sensitive dual-frequency designer waveform into the Fourier-transformed large-amplitude alternating current (FTAC) voltammetric method that is made up of two sine waves having the same amplitude but with different frequencies (e.g., 37 and 615 Hz) superimposed onto a dc ramp to quantify the close-to-reversible Fc(0/+) process (Fc = ferrocene) in two nonhaloaluminate ionic liquids. The concept is that from a single experiment the lower-frequency data set, collected on a time scale where the target process is reversible, can be used as an internal reference to calibrate A, D, C, and Ru. These calibrated values are then used to calculate k(0) from analysis of the harmonics of the higher-frequency data set, where the target process is quasi-reversible. With this approach, k(0) values of 0.28 and 0.11 cm·s(-1) have been obtained at a 50 µm diameter platinum microdisk electrode for the close-to-diffusion-controlled Fc(0/+) process in two ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, respectively.

16.
Anal Chem ; 88(3): 1915-21, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26708364

RESUMO

The electrochemical behavior of iodine remains a contemporary research interest due to the integral role of the I(-)/I3(-) couple in dye-sensitized solar cell technology. The neutral (I2) and positive (I(+)) oxidation states of iodine are known to be strongly electrophilic, and thus the I(-)/I2/I(+) redox processes are sensitive to the presence of nucleophilic chloride or bromide, which are both commonly present as impurities in nonhaloaluminate room temperature ionic liquids (ILs). In this study, the electrochemistry of I(-), I2, and ICl has been investigated by cyclic voltammetry at a platinum macrodisk electrode in a binary IL mixture composed of 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C2mim][NTf2]). In the absence of chloride (e.g., in neat [C2mim][NTf2]), I(-) is oxidized in an overall one electron per iodide ion process to I2 via an I3(-) intermediate, giving rise to two resolved I(-)/I3(-) and I3(-)/I2 processes, as per previous reports. In the presence of low concentrations of chloride ([Cl(-)] and [I(-)] are both <30 mM), an additional oxidation process appears at potentials less positive than the I3(-)/I2 process, which corresponds to the oxidation of I3(-) to the interhalide complex anion [ICl2](-), in an overall two electron per iodide ion process. In the presence of a large excess of Cl(-) ([I(-)] ≈ 10 mM and [Cl(-)] ≈ 3.7 M), I(-) is oxidized in an overall two electron per iodide ion process to [ICl2](-) via an [I2Cl](-) intermediate (confirmed by investigating the voltammetric response of ICl and I2 under these conditions). In summary, the I(-)/I2/I(+) processes in nonhaloaluminate ILs involve a complicated interplay between multiple electron transfer pathways and homogeneous chemical reactions which may not be at equilibrium on the voltammetric time scale.

17.
Anal Chem ; 86(4): 2073-81, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24444296

RESUMO

The robustness of convolution voltammetry for determining accurate values of the diffusivity (D), bulk concentration (C(b)), and stoichiometric number of electrons (n) has been demonstrated by applying the technique to a series of electrode reactions in molecular solvents and room temperature ionic liquids (RTILs). In acetonitrile, the relatively minor contribution of nonfaradaic current facilitates analysis with macrodisk electrodes, thus moderate scan rates can be used without the need to perform background subtraction to quantify the diffusivity of iodide [D = 1.75 (±0.02) × 10(-5) cm(2) s(-1)] in this solvent. In the RTIL 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, background subtraction is necessary at a macrodisk electrode but can be avoided at a microdisk electrode, thereby simplifying the analytical procedure and allowing the diffusivity of iodide [D = 2.70 (±0.03) × 10(-7) cm(2) s(-1)] to be quantified. Use of a convolutive procedure which simultaneously allows D and nC(b) values to be determined is also demonstrated. Three conditions under which a technique of this kind may be applied are explored and are related to electroactive species which display slow dissolution kinetics, undergo a single multielectron transfer step, or contain multiple noninteracting redox centers using ferrocene in an RTIL, 1,4-dinitro-2,3,5,6-tetramethylbenzene, and an alkynylruthenium trimer, respectively, as examples. The results highlight the advantages of convolution voltammetry over steady-state techniques such as rotating disk electrode voltammetry and microdisk electrode voltammetry, as it is not restricted by the mode of diffusion (planar or radial), hence removing limitations on solvent viscosity, electrode geometry, and voltammetric scan rate.

19.
Chem Sci ; 15(19): 7243-7258, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756820

RESUMO

The next-generation of energy devices rely on advanced catalytic materials, especially electrocatalytic nanoparticles (NPs), to achieve the performance and cost required to reshape the energy landscape towards a more sustainable and cleaner future. It has become imperative to maximize the performance of the catalyst, both through improvement of the intrinsic activity of the NP, and by ensuring all particles are performing at the level of their capability. This requires not just a structure-function understanding of the catalytic material, but also an understanding of how the catalyst performance is impacted by its environment (substrate, ligand, etc.). The intrinsic activity and environment of catalytic particles on a support may differ wildly by particle, thus it is essential to build this understanding from a single-entity perspective. To achieve this herein, scanning electrochemical cell microscopy (SECCM) has been used, which is a droplet-based scanning probe technique which can encapsulate single NPs, and apply a voltage to the nanoparticle whilst measuring its resulting current. Using SECCM, single AuNPs have been encapsulated, and their activity for the borohydride oxidation reaction (BOR) is measured. A total of 268 BOR-active locations were probed (178 single particles) and a series of statistical analyses were performed in order to make the following discoveries: (1) a certain percentage of AuNPs display no BOR activity in the SECCM experiment (67.4% of single NPs), (2) visibly-similar particles display wildly varied BOR activities which cannot be explained by particle size, (3) the impact of cluster size (#NP at a single location) on a selection of diagnostic electrochemical parameters can be easily probed with SECCM, (4) exploratory statistical correlation between these parameters can be meaningfully performed with SECCM, and (5) outlying "abnormal" NP responses can be probed on a particle-by-particle basis. Each one of these findings is its own worthwhile study, yet this has been achieved with a single SECCM scan. It is hoped that this research will spur electrochemists and materials scientists to delve deeper into their substantial datasets in order to enhance the structure-function understanding, to bring about the next generation of high-performance electrocatalysts.

20.
Chem Commun (Camb) ; 60(36): 4781-4784, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38600827

RESUMO

Scanning electrochemical cell microscopy (SECCM) is employed to directly identify the structure-dependent electrochemical CO2 reduction reaction (eCO2RR) activity of molybdenite (MoS2) electrocatalysts in an aqueous imidazolium-based aprotic ionic liquid electrolyte. Nanoscale defects, where the edge plane (EP) is exposed, are directly targeted, revealing heightened overall activity (eCO2RR + the competing hydrogen evolution reaction, HER) over the relatively inactive basal plane (BP). In addition, certain types of defects (e.g., step edges) only exhibit heightened activity under a CO2 atmosphere (i.e., compared to N2), indirectly confirming higher selectivity at these surface sites. Overall, this work will guide the bottom-up design of earth-abundant electrocatalysts for use in large-scale CO2 electrolysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA