Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Immunol ; 25(7): 1193-1206, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834865

RESUMO

Immune cells experience large cell shape changes during environmental patrolling because of the physical constraints that they encounter while migrating through tissues. These cells can adapt to such deformation events using dedicated shape-sensing pathways. However, how shape sensing affects immune cell function is mostly unknown. Here, we identify a shape-sensing mechanism that increases the expression of the chemokine receptor CCR7 and guides dendritic cell migration from peripheral tissues to lymph nodes at steady state. This mechanism relies on the lipid metabolism enzyme cPLA2, requires nuclear envelope tensioning and is finely tuned by the ARP2/3 actin nucleation complex. We also show that this shape-sensing axis reprograms dendritic cell transcription by activating an IKKß-NF-κB-dependent pathway known to control their tolerogenic potential. These results indicate that cell shape changes experienced by immune cells can define their migratory behavior and immunoregulatory properties and reveal a contribution of the physical properties of tissues to adaptive immunity.


Assuntos
Movimento Celular , Células Dendríticas , Homeostase , Linfonodos , Camundongos Endogâmicos C57BL , Receptores CCR7 , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Linfonodos/imunologia , Linfonodos/citologia , Receptores CCR7/metabolismo , Camundongos , Movimento Celular/imunologia , Forma Celular , NF-kappa B/metabolismo , Camundongos Knockout , Transdução de Sinais/imunologia , Quinase I-kappa B/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo
2.
Oncoimmunology ; 13(1): 2367843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887373

RESUMO

Conventional type 1 dendritic cells (cDC1) are critical regulators of anti-tumoral T-cell responses. The structure and abundance of intercellular contacts between cDC1 and CD8 T cells in cancer tissues is important to determine the outcome of the T-cell response. However, the molecular determinants controlling the stability of cDC1-CD8 interactions during cancer progression remain poorly investigated. Here, we generated a genetic model of non-small cell lung cancer crossed to a fluorescent cDC1 reporter (KP-XCR1venus) to allow the detection of cDC1-CD8T cell clusters in tumor tissues across tumor stages. We found that cDC1-CD8 clusters are abundant and productive at the early stages of tumor development but progressively diminish in advanced tumors. Transcriptional profiling and flow cytometry identified the adhesion molecule ALCAM/CD166 (Activated Leukocyte Cell Adhesion Molecule, ligand of CD6) as highly expressed by lung cDC1 and significantly downregulated in advanced tumors. Analysis of human datasets indicated that ALCAM is downregulated in non-small cell lung cancer and its expression correlates to better prognosis. Mechanistically, triggering ALCAM on lung cDC1 induces cytoskeletal remodeling and contact formation whereas its blockade prevents T-cell activation. Together, our results indicate that ALCAM is important to stabilize cDC1-CD8 interactions at early tumor stages, while its loss in advanced tumors contributes to immune evasion.


Assuntos
Antígenos CD , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas , Células Dendríticas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Camundongos , Antígenos CD/metabolismo , Antígenos CD/genética , Antígenos CD/imunologia , Proteínas Fetais/metabolismo , Proteínas Fetais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Comunicação Celular/imunologia , Molécula de Adesão de Leucócito Ativado
3.
Cell Rep ; 43(4): 114096, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607919

RESUMO

Receptors controlling the cross-presentation of tumor antigens by macrophage subsets in cancer tissues are poorly explored. Here, we show that TIM4+ large peritoneal macrophages efficiently capture and cross-present tumor-associated antigens at early stages of peritoneal infiltration by ovarian cancer cells. The phosphatidylserine (PS) receptor TIM4 promotes maximal uptake of dead cells or PS-coated artificial targets and triggers inflammatory and metabolic gene programs in combination with cytoskeletal remodeling and upregulation of transcriptional signatures related to antigen processing. At the cellular level, TIM4-mediated engulfment induces nucleation of F-actin around nascent phagosomes, delaying the recruitment of vacuolar ATPase, acidification, and cargo degradation. In vivo, TIM4 deletion blunts induction of early anti-tumoral effector CD8 T cells and accelerates the progression of ovarian tumors. We conclude that TIM4-mediated uptake drives the formation of specialized phagosomes that prolong the integrity of ingested antigens and facilitate cross-presentation, contributing to immune surveillance of the peritoneum.


Assuntos
Antígenos de Neoplasias , Carcinogênese , Macrófagos Peritoneais , Animais , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/imunologia , Feminino , Camundongos , Carcinogênese/patologia , Carcinogênese/imunologia , Carcinogênese/metabolismo , Humanos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Apresentação Cruzada/imunologia , Linhagem Celular Tumoral , Fagossomos/metabolismo , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Actinas/metabolismo
4.
Neuropharmacology ; 257: 110048, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901642

RESUMO

Maintenance therapy with buprenorphine and methadone is the gold standard pharmacological treatment for opioid use disorder (OUD). Despite these compounds demonstrating substantial efficacy, a significant number of patients do not show optimal therapeutic responses. The abuse liability of these medications is also a concern. Here we used rats to explore the therapeutic potential of the new long-acting pan-opioid agonist Cebranopadol in OUD. We tested the effect of cebranopadol on heroin self-administration and yohimbine-induced reinstatement of heroin seeking. In addition, we evaluated the abuse liability potential of cebranopadol in comparison to that of heroin under fixed ratio 1 (FR1) and progressive ratio (PR) operant self-administration contingencies. Oral administration of cebranopadol (0, 25, 50 µg/kg) significantly attenuated drug self-administration independent of heroin dose (1, 7, 20, 60µg/inf). Cebranopadol also reduced the break point for heroin (20 µg/inf). Finally, pretreatment with cebranopadol significantly attenuated yohimbine-induced reinstatement of drug seeking. In abuse liability experiments under FR1 contingency, rats maintained responding for heroin (1, 7, 20, 60µg/inf) to a larger extent than cebranopadol (0.03, 0.1, 0.3, 1.0, 6.0µg/inf). Under PR contingency, heroin maintained responding at high levels at all except the lowest dose, while the break point (BP) for cebranopadol did not differ from that of saline. Together, these data indicate that cebranopadol is highly efficacious in attenuating opioid self-administration and stress-induced reinstatement, while having limited abuse liability properties. Overall, the data suggest clinical potential of this compound for OUD treatment.


Assuntos
Heroína , Transtornos Relacionados ao Uso de Opioides , Autoadministração , Ioimbina , Animais , Masculino , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Ratos , Heroína/administração & dosagem , Ioimbina/farmacologia , Ratos Sprague-Dawley , Compostos de Espiro/farmacologia , Compostos de Espiro/administração & dosagem , Compostos de Espiro/uso terapêutico , Comportamento de Procura de Droga/efeitos dos fármacos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Indóis/farmacologia , Indóis/administração & dosagem
5.
Nat Commun ; 15(1): 2280, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480738

RESUMO

Cross-presentation by type 1 DCs (cDC1) is critical to induce and sustain antitumoral CD8 T cell responses to model antigens, in various tumor settings. However, the impact of cross-presenting cDC1 and the potential of DC-based therapies in tumors carrying varied levels of bona-fide neoantigens (neoAgs) remain unclear. Here we develop a hypermutated model of non-small cell lung cancer in female mice, encoding genuine MHC-I neoepitopes to study neoAgs-specific CD8 T cell responses in spontaneous settings and upon Flt3L + αCD40 (DC-therapy). We find that cDC1 are required to generate broad CD8 responses against a range of diverse neoAgs. DC-therapy promotes immunogenicity of weaker neoAgs and strongly inhibits the growth of high tumor-mutational burden (TMB) tumors. In contrast, low TMB tumors respond poorly to DC-therapy, generating mild CD8 T cell responses that are not sufficient to block progression. scRNA transcriptional analysis, immune profiling and functional assays unveil the changes induced by DC-therapy in lung tissues, which comprise accumulation of cDC1 with increased immunostimulatory properties and less exhausted effector CD8 T cells. We conclude that boosting cDC1 activity is critical to broaden the diversity of anti-tumoral CD8 T cell responses and to leverage neoAgs content for therapeutic advantage.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Feminino , Camundongos , Animais , Células Dendríticas , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Linfócitos T CD8-Positivos , Apresentação Cruzada
6.
J Exp Clin Cancer Res ; 43(1): 15, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195652

RESUMO

BACKGROUND: New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect. METHODS: We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer. RESULTS: EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers. Mechanistically, EMID2 inhibited TGFß maturation and activation of cancer-associated fibroblasts, resulting in more elastic ECM and reduced levels of YAP in the nuclei of cancer cells. CONCLUSION: This is the first in vivo screening, precisely designed to identify proteins able to interfere with cancer cell invasiveness. EMID2 was selected as the most potent protein, in line with the emerging relevance of the tumor extracellular matrix in controlling cancer cell invasiveness and dissemination, which kills most of cancer patients.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Núcleo Celular , Modelos Animais de Doenças , Detecção Precoce de Câncer , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Colágeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA