RESUMO
OBJECTIVE: To describe and discuss a 2-step methodology developed to select a reference society that provides Dietary Reference Values (DRV) for national implementation and to illustrate its application in Switzerland with one macronutrient and one micronutrient. DESIGN: During Step 1, we searched and compared DRV and methodologies used to define DRV from eight European societies for seven selected nutrients. We repeated this procedure during Step 2 for DRV from two preselected societies for forty-four nutrients. SETTING: The 2-step methodology applied here for Switzerland may be used in other countries. PARTICIPANTS: The research team commissioned six external experts from three linguistic regions of Switzerland, who provided their opinions through two online surveys, individual interviews and a focus group. RESULTS: After Step 1, we excluded five societies because of old publication dates, irrelevant publication languages for Switzerland, difficulty in accessing documents, or because their DRV were mainly based on another society. After Step 2, the two societies were qualified based on the analysis of the values and methodologies used. The need for free and easily accessible scientific background information favoured the European Food Safety Authority (EFSA). We chose alternative societies for nine nutrients for the overall population or subgroups and for the elderly. CONCLUSIONS: To manage heterogeneous and complex data from several societies, adopting a 2-step methodology including fewer nutrients and more societies during Step 1, and fewer societies but all nutrients in Step 2, was very helpful. With some exceptions, we selected EFSA as the main society to provide DRV for Switzerland.
Assuntos
Dieta , Nutrientes , Humanos , Idoso , Valores de Referência , Micronutrientes , SuíçaRESUMO
PURPOSE: Urinary spot samples are a promising method for the biomonitoring of micronutrient intake in children. Our aim was to assess whether urinary spot samples could be used to estimate the 24-h urinary excretion of potassium, phosphate, and iodine at the population level. METHODS: A cross-sectional study of 101 children between 6 and 16 years of age was conducted. Each child collected a 24-h urine collection and three urinary spot samples (evening, overnight, and morning). Several equations were used to estimate 24-h excretion based on the urinary concentrations of each micronutrient in the three spot samples. Various equations and spot combinations were compared using several statistics and plots. RESULTS: Ninety-four children were included in the analysis (mean age: 10.5 years). The mean measured 24-h urinary excretions of potassium, phosphate, and iodine were 1.76 g, 0.61 g, and 95 µg, respectively. For potassium, the best 24-h estimates were obtained with the Mage equation and morning spot (mean bias: 0.2 g, correlation: 0.27, precision: 56%, and misclassification: 10%). For phosphate, the best 24-h estimates were obtained with the Mage equation and overnight spot (mean bias: - 0.03 g, correlation: 0.54, precision: 72%, and misclassification: 10%). For iodine, the best 24-h estimates were obtained with the Remer equation and overnight spot (mean bias: - 8 µg, correlation: 0.58, precision: 86%, misclassification: 16%). CONCLUSIONS: Urinary spot samples could be a good alternative to 24-h urine collection for the population biomonitoring of iodine and phosphate intakes in children. For potassium, spot samples were less reliable.