RESUMO
Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurrence of 2-phosphoglycolate salvage is linked to the CBB cycle, and in particular, the C2 pathway to the CBB cycle and oxygenic photosynthesis. Here, we examined 2-phosphoglycolate salvage in the hyperthermophilic archaeon Thermococcus kodakarensis, an obligate anaerobe that harbors a Rubisco that functions in the pentose bisphosphate pathway. T. kodakarensis harbors enzymes that have the potential to convert 2-phosphoglycolate to glycine and serine, and their genes were identified by biochemical and/or genetic analyses. 2-phosphoglycolate phosphatase activity increased 1.6-fold when cells were grown under microaerobic conditions compared to anaerobic conditions. Among two candidates, TK1734 encoded a phosphatase specific for 2-phosphoglycolate, and the enzyme was responsible for 80% of the 2-phosphoglycolate phosphatase activity in T. kodakarensis cells. The TK1734 disruption strain displayed growth impairment under microaerobic conditions, which was relieved upon addition of sodium sulfide. In addition, glycolate was detected in the medium when T. kodakarensis was grown under microaerobic conditions. The results suggest that T. kodakarensis removes 2-phosphoglycolate via a phosphatase reaction followed by secretion of glycolate to the medium. As the Rubisco in T. kodakarensis functions in the pentose bisphosphate pathway and not in the CBB cycle, mechanisms to remove 2-phosphoglycolate in this archaeon emerged independent of the CBB cycle.
Assuntos
Archaea , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Archaea/metabolismo , Fotossíntese , Glicolatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Oxigenases/metabolismo , PentosesRESUMO
Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H2) and play a key role in the energy metabolism of microorganisms in anaerobic environments. The hyperthermophilic archaeon Thermococcus kodakarensis KOD1, which assimilates organic carbon coupled with the reduction of elemental sulfur (S°) or H2 generation, harbors three gene operons encoding [NiFe]-hydrogenase orthologs, namely, Hyh, Mbh, and Mbx. In order to elucidate their functions in vivo, a gene disruption mutant for each [NiFe]-hydrogenase ortholog was constructed. The Hyh-deficient mutant (PHY1) grew well under both H2S- and H2-evolving conditions. H2S generation in PHY1 was equivalent to that of the host strain, and H2 generation was higher in PHY1, suggesting that Hyh functions in the direction of H2 uptake in T. kodakarensis under these conditions. Analyses of culture metabolites suggested that significant amounts of NADPH produced by Hyh are used for alanine production through glutamate dehydrogenase and alanine aminotransferase. On the other hand, the Mbh-deficient mutant (MHD1) showed no growth under H2-evolving conditions. This fact, as well as the impaired H2 generation activity in MHD1, indicated that Mbh is mainly responsible for H2 evolution. The copresence of Hyh and Mbh raised the possibility of intraspecies H2 transfer (i.e., H2 evolved by Mbh is reoxidized by Hyh) in this archaeon. In contrast, the Mbx-deficient mutant (MXD1) showed a decreased growth rate only under H2S-evolving conditions and exhibited a lower H2S generation activity, indicating the involvement of Mbx in the S° reduction process. This study provides important genetic evidence for understanding the physiological roles of hydrogenase orthologs in the Thermococcales.
Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Hidrogenase/metabolismo , Thermococcus/enzimologia , Divisão Celular , Perfilação da Expressão Gênica , Hidrogenase/classificação , Hidrogenase/genética , Isoenzimas , Mutação , Thermococcus/citologia , Thermococcus/metabolismoRESUMO
The hyperthermophilic archaeon Thermococcus kodakarensis can grow on pyruvate or maltooligosaccharides through H2 fermentation. H2 production levels of members of the Thermococcales are high, and studies to improve their production potential have been reported. Although H2 production is primary metabolism, here we aimed to partially uncouple cell growth and H2 production of T. kodakarensis. Additional A1-type ATPase genes were introduced into T. kodakarensis KU216 under the control of two promoters; the strong constitutive cell surface glycoprotein promoter, Pcsg, and the sugar-inducible fructose-1,6-bisphosphate aldolase promoter, Pfba. Whereas cells with the A1-type ATPase genes under the control of Pcsg displayed only trace levels of growth, cells with Pfba (strain KUA-PF) displayed growth sufficient for further analysis. Increased levels of A1-type ATPase protein were detected in KUA-PF cells grown on pyruvate or maltodextrin, when compared to the levels in the host strain KU216. The growth and H2 production levels of strain KUA-PF with pyruvate or maltodextrin as a carbon and electron source were analyzed and compared to those of the host strain KU216. Compared to a small decrease in total H2 production, significantly larger decreases in cell growth were observed, resulting in an increase in cell-specific H2 production. Quantification of the substrate also revealed that ATPase overexpression led to increased cell-specific pyruvate and maltodextrin consumptions. The results clearly indicate that ATPase production results in partial uncoupling of cell growth and H2 production in T. kodakarensis.
Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Regulação da Expressão Gênica em Archaea , Hidrogênio/metabolismo , Thermococcus/enzimologia , Thermococcus/genética , Carbono/metabolismo , Dosagem de Genes/fisiologia , Regulação da Expressão Gênica em Archaea/genética , Organismos Geneticamente Modificados/metabolismo , Polissacarídeos/metabolismo , Ácido Pirúvico/metabolismoRESUMO
The hyperthermophilic archaeon Thermococcus kodakarensis can utilize sugars or pyruvate for growth. In the absence of elemental sulfur, the electrons via oxidation of these substrates are accepted by protons, generating molecular hydrogen (H2). The hydrogenase responsible for this reaction is a membrane-bound [NiFe]-hydrogenase (Mbh). In this study, we have examined several possibilities to increase the protein levels of Mbh in T. kodakarensis by genetic engineering. Highest levels of intracellular Mbh levels were achieved when the promoter of the entire mbh operon (TK2080-TK2093) was exchanged to a strong constitutive promoter from the glutamate dehydrogenase gene (TK1431) (strain MHG1). When MHG1 was cultivated under continuous culture conditions using pyruvate-based medium, a nearly 25% higher specific hydrogen production rate (SHPR) of 35.3 mmol H2 g-dcw(-1) h(-1) was observed at a dilution rate of 0.31 h(-1). We also combined mbh overexpression using an even stronger constitutive promoter from the cell surface glycoprotein gene (TK0895) with disruption of the genes encoding the cytosolic hydrogenase (Hyh) and an alanine aminotransferase (AlaAT), both of which are involved in hydrogen consumption (strain MAH1). At a dilution rate of 0.30 h(-1), the SHPR was 36.2 mmol H2 g-dcw(-1) h(-1), corresponding to a 28% increase compared to that of the host T. kodakarensis strain. Increasing the dilution rate to 0.83 h(-1) or 1.07 h(-1) resulted in a SHPR of 120 mmol H2 g-dcw(-1) h(-1), which is one of the highest production rates observed in microbial fermentation.