Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mediators Inflamm ; 2015: 628340, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26457007

RESUMO

While it has long been established that the chemokine receptor CCR9 and its ligand CCL25 are essential for the movement of leukocytes into the small intestine and the development of small-intestinal inflammation, the role of this chemokine-receptor pair in colonic inflammation is not clear. Toward this end, we compared colonic CCL25 protein levels in healthy individuals to those in patients with ulcerative colitis. In addition, we determined the effect of CCR9 pharmacological inhibition in the mdr1a(-/-) mouse model of ulcerative colitis. Colon samples from patients with ulcerative colitis had significantly higher levels of CCL25 protein compared to healthy controls, a finding mirrored in the mdr1a(-/-) mice. In the mdr1a(-/-) mice, CCR9 antagonists significantly decreased the extent of wasting and colonic remodeling and reduced the levels of inflammatory cytokines in the colon. These findings indicate that the CCR9:CCL25 pair plays a causative role in ulcerative colitis and suggest that CCR9 antagonists will provide a therapeutic benefit in patients with colonic inflammation.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Receptores CCR/antagonistas & inibidores , Receptores CCR/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Colite Ulcerativa/genética , Feminino , Humanos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Sulfonamidas/uso terapêutico
2.
Immunology ; 141(1): 111-22, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24116850

RESUMO

The concentration of CXCL12/SDF-1 in the bloodstream is tightly regulated, given its central role in leucocyte and stem/progenitor cell egress from bone marrow and recruitment to sites of inflammation or injury. The mechanism responsible for this regulation is unknown. Here we show that both genetic deletion and pharmacological inhibition of CXCR7, a high-affinity CXCL12 receptor, caused pronounced increases in plasma CXCL12 levels. The rise in plasma CXCL12 levels was associated with an impairment in the ability of leucocytes to migrate to a local source of CXCL12. Using a set of complementary and highly sensitive techniques, we found that CXCR7 protein is expressed at low levels in multiple organs in both humans and mice. In humans, CXCR7 was detected primarily on venule endothelium and arteriole smooth muscle cells. CXCR7 expression on venule endothelium was also documented in immunodeficient mice and CXCR7(+/lacZ) mice. The vascular expression of CXCR7 therefore gives it immediate access to circulating CXCL12. These studies suggest that endothelial CXCR7 regulates circulating CXCL12 levels and that CXCR7 inhibitors might be used to block CXCL12-mediated cell migration for therapeutic purposes.


Assuntos
Quimiocina CXCL12/imunologia , Endotélio Vascular/imunologia , Regulação da Expressão Gênica/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Receptores CXCR/imunologia , Animais , Movimento Celular/imunologia , Quimiocina CXCL12/sangue , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Leucócitos/citologia , Leucócitos/imunologia , Leucócitos/metabolismo , Camundongos , Especificidade de Órgãos/imunologia , Receptores CXCR/biossíntese
3.
Am J Physiol Renal Physiol ; 305(9): F1288-97, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23986513

RESUMO

Chemokine (C-C motif) receptor 2 (CCR2) is central for the migration of monocytes into inflamed tissues. The novel CCR2 antagonist CCX140-B, which is currently in two separate phase 2 clinical trials in diabetic nephropathy, has recently been shown to reduce hemoglobin A1c and fasting blood glucose levels in type 2 diabetics. In this report, we describe the effects of this compound on glycemic and renal function parameters in diabetic mice. Since CCX140-B has a low affinity for mouse CCR2, transgenic human CCR2 knockin mice were generated and rendered diabetic with either a high-fat diet (diet-induced obesity) or by deletion of the leptin receptor gene (db/db). CCX140-B treatment in both models resulted in decreased albuminuria, which was associated with decreased glomerular hypertrophy and increased podocyte density. Moreover, treatment of diet-induced obese mice with CCX140-B resulted in decreased levels of fasting blood glucose and insulin, normalization of homeostatic model assessment of insulin resistance values, and decreased numbers of adipose tissue inflammatory macrophages. Unlike other CCR2 antagonists, CCX140-B had no effect on plasma levels of the CCR2 ligand CCL2 or on the numbers of blood monocytes. These results support the ongoing evaluation of this molecule in diabetic subjects with impaired renal function.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Rim/efeitos dos fármacos , Receptores CCR2/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Nefropatias Diabéticas/genética , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Resistência à Insulina , Testes de Função Renal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores CCR2/genética
4.
J Immunol ; 185(9): 5130-9, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20889540

RESUMO

Since the discovery that CXCR7 binds to CXCL12/SDF-1α, the role of CXCR7 in CXCL12-mediated biological processes has been under intensive scrutiny. However, there is no consensus in the literature on the expression of CXCR7 protein by peripheral blood cells. In this study we analyzed human and mouse leukocytes and erythrocytes for CXCR7 protein expression, using a competitive CXCL12 binding assay as well as by flow cytometry and immunohistochemistry using multiple CXCR7 Abs. CXCR7(-/-) mice were used as negative controls. Together, these methods indicate that CXCR7 protein is not expressed by human peripheral blood T cells, B cells, NK cells, or monocytes, or by mouse peripheral blood leukocytes. CXCR7 protein is, however, expressed on mouse primitive erythroid cells, which supply oxygen to the embryo during early stages of development. These studies therefore suggest that, whereas CXCR7 protein is expressed by primitive RBCs during murine embryonic development, in adult mammals CXCR7 protein is not expressed by normal peripheral blood cells.


Assuntos
Eritrócitos/metabolismo , Leucócitos/metabolismo , Receptores CXCR/biossíntese , Adulto , Animais , Separação Celular , Embrião de Mamíferos , Citometria de Fluxo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Mol Cancer ; 10: 73, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21672222

RESUMO

BACKGROUND: Migration of metastatic tumor cells from the bloodstream into lymph nodes is thought to be facilitated by expression of the chemokine receptors CCR7, CXCR4 and, for B cell-derived tumors, CXCR5. Expression of their respective chemokine ligands (CCL19, CCL21, CXCL12 and CXCL13) by endothelial cells inside the lymph nodes facilitates the trans-endothelial migration (TEM) of these cells through high endothelial venules into the lymph node parenchyma. It is known that CXCR7, a second CXCL12 receptor, regulates TEM of CXCR4+CXCR7+ tumor cells towards a CXCL12 source. In this study, we set out to assess the potential stimulation by CXCL12 of tumor cell TEM towards other chemokines and whether CXCR7 might be able to regulate such effects. METHODS: The human Burkitt's lymphoma cell line NC-37, which expresses CXCR4, CXCR5, CXCR7 and CCR7, was selected as a model system. TEM of these cells through a human HUVEC endothelial cell monolayer was used as the main model system for these studies. Regulation of their TEM behavior by various concentrations of the various cognate chemokines for the above-mentioned receptors, placed in either the source or target wells of modified Boyden chamber migration plates, was assessed by quantifying the number of cells migrated under each experimental condition. RESULTS: Exposure of CXCR4⁺CXCR7⁺ cancer cells to CXCL12 greatly potentiated their TEM towards the chemokines CCL19 and CXCL13. This CXCL12-potentiated TEM was inhibited by the second CXCR7 chemokine ligand, CXCL11, as well as CXCR7-specific small molecule antagonists and antibodies. In contrast, the CXCR4 antagonist AMD3100 was less effective at inhibiting CXCL12-potentiated TEM. Thus, CXCR7 antagonists may be effective therapeutic agents for blocking CXCL12-mediated migration of CXCR4⁺CXCR7⁺ tumor cells into lymph nodes, regardless of whether the cancer cells follow a CXCL12 gradient or whether serum CXCL12 stimulates their migration towards CCR7 and CXCR5 chemokines in the lymph nodes.


Assuntos
Neoplasias/fisiopatologia , Receptores CXCR/metabolismo , Migração Transendotelial e Transepitelial/genética , Anticorpos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Quimiocinas/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Linfoma de Células B/fisiopatologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores CCR7/metabolismo , Receptores CXCR/antagonistas & inibidores , Receptores CXCR5/metabolismo , Migração Transendotelial e Transepitelial/efeitos dos fármacos
6.
J Immunol ; 183(5): 3204-11, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19641136

RESUMO

CXCR7 binds chemokines CXCL11 (I-TAC) and CXCL12 (SDF-1) but does not act as a classical chemoattractant receptor. Using CCX771, a novel small molecule with high affinity and selectivity for CXCR7, we found that, although CXCR7 is dispensable for "bare filter" in vitro chemotaxis, CXCR7 plays an essential role in the CXCL12/CXCR4-mediated transendothelial migration (TEM) of CXCR4(+)CXCR7(+) human tumor cells. Importantly, although CXCL11 is unable to stimulate directly the migration of these cells, it acts as a potent antagonist of their CXCL12-induced TEM. Furthermore, even though this TEM is driven by CXCR4, the CXCR7 ligand CCX771 is substantially more potent at inhibiting it than the CXCR4 antagonist AMD3100, which is more than 100 times weaker at inhibiting TEM when compared with its ability to block bare filter chemotaxis. Far from being a "silent" receptor, we show that CXCR7 displays early hallmark events associated with intracellular signaling. Upon cognate chemokine binding, CXCR7 associates with beta-arrestin2, an interaction that can be blocked by CXCR7-specific mAbs. Remarkably, the synthetic CXCR7 ligand CCX771 also potently stimulates beta-arrestin2 recruitment to CXCR7, with greater potency and efficacy than the endogenous chemokine ligands. These results indicate that CXCR7 can regulate CXCL12-mediated migratory cues, and thus may play a critical role in driving CXCR4(+)CXCR7(+) tumor cell metastasis and tissue invasion. CXCR7 ligands, such as the chemokine CXCL11 and the newly described synthetic molecule CCX771, may represent novel therapeutic opportunities for the control of such cells.


Assuntos
Inibição de Migração Celular/imunologia , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/fisiologia , Receptores CXCR/antagonistas & inibidores , Receptores CXCR/fisiologia , Transdução de Sinais/imunologia , Animais , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/metabolismo , Quimiotaxia de Leucócito/imunologia , Cricetinae , Cricetulus , Endotélio Vascular/metabolismo , Humanos , Ligantes , Receptores CXCR/biossíntese , Receptores CXCR/metabolismo , Receptores CXCR4/biossíntese , Células U937
7.
Metabolism ; 62(11): 1623-32, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23953944

RESUMO

OBJECTIVE: CCR2 inhibition has produced promising experimental and clinical anti-hyperglycemic effects. These results support the thesis that insulin resistance and Type 2 diabetes (T2D) are associated with chronic unresolved inflammation. The aim of this study was to provide a broad analysis of the various physiological changes occurring in mouse models of T2D in connection with pharmacological CCR2 inhibition. MATERIALS/METHODS: A mouse-active chemical analogue of the clinical candidate CCX140-B was tested in diet-induced obese (DIO) mice and db/db mice. Measurements included: adipose tissue inflammatory macrophage counts; peripheral blood glucose levels at steady-state and after glucose and insulin challenges; peripheral blood insulin and adiponectin levels; 24-h urine output and urinary glucose levels; pancreatic islet number and size; hepatic triglyceride and glycogen content; and hepatic glucose-6-phosphatase levels. RESULTS: In DIO mice, the CCR2 antagonist completely blocked the recruitment of inflammatory macrophages to visceral adipose tissue. The mice exhibited reduced hyperglycemia and insulinemia, improved insulin sensitivity, increased circulating adiponectin levels, decreased pancreatic islet size and increased islet number. It also reduced urine output, glucose excretion, hepatic glycogen and triglyceride content and glucose 6-phosphatase levels. Similar effects were observed in the db/db diabetic mice. CONCLUSIONS: These data indicate that pharmacological inhibition of CCR2 in models of T2D can reduce inflammation in adipose tissue, alter hepatic metabolism and ameliorate multiple diabetic parameters. These mechanisms may contribute to the promising anti-diabetic effects seen in humans with at least one CCR2 antagonist.


Assuntos
Tecido Adiposo/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/farmacologia , Resistência à Insulina , Macrófagos , Obesidade/metabolismo , Receptores CCR2/antagonistas & inibidores , Adiponectina/sangue , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica , Relação Dose-Resposta a Droga , Glucose-6-Fosfatase/metabolismo , Glicogênio/metabolismo , Glicosúria/diagnóstico , Hipoglicemiantes/uso terapêutico , Inflamação/metabolismo , Insulina/administração & dosagem , Insulina/sangue , Células Secretoras de Insulina/patologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/complicações , Obesidade/etiologia , Receptores CCR2/metabolismo , Triglicerídeos/metabolismo
8.
Oncol Lett ; 1(5): 845-847, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22966392

RESUMO

Metastatic breast cancer is the leading cause of cancer-related death in women worldwide and, despite recent therapeutic advances, the disease remains incurable. A critical step in cancer cell metastasis is the degradation of extracellular matrix components by matrix metalloproteinases (MMPs), which permits malignant cells to separate from the primary tumor and access circulatory conduits for seeding distant organs. This study reports a correlation between the elevated secretion of MMP-3 by breast cancer cells and the expression of CCR7 protein, a recently discovered non-classical chemokine receptor that may play a role in metastasis by regulating tumor cell transendothelial migration. MMP-3 secretion is increased in human mammary tumor cells that overexpress CXCR7, and is reduced in mouse breast cancer cells in which the endogenous CXCR7 expression has been knocked down via RNAi. The correlation between CXCR7 and MMP-3 expression in breast cancer may provide additional therapeutic rationale for targeting CXCR7 in order to prevent metastatic disease.

10.
J Immunol ; 177(11): 7833-40, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17114454

RESUMO

To help understand the role of chemokines in NK cell trafficking, we determined the chemokine receptor profiles of three different human NK cell lines and freshly isolated primary human NK cells. The cell lines overlapped in their chemokine receptor profiles: CXCR3 and CXCR4 were expressed by all three lines, whereas CCR1, CCR4, CCR6, CCR7, and CX3CR1 were expressed by only one or two of the lines, and no other chemokine receptors were detected. Freshly isolated primary NK cells were found to express CXCR1, CXCR3, and CXCR4, and to contain subsets expressing CCR1, CCR4, CCR5, CCR6, CCR7, CCR9, CXCR5, and CXCR6. With the exception of CCR4, these chemokine receptors were expressed at higher percentages by CD56(bright) NK cells than by CD56(dim) NK cells. In particular, CCR7 was expressed by almost all CD56(bright) NK cells but was not detected on CD56(dim) NK cells. CCR9 and CXCR6 have not been described previously on primary NK cells. These results indicate that within both the CD56(bright) and CD56(dim) NK cell populations, subsets with the capacity for differential trafficking programs exist, which likely influence their functions in innate and adaptive immunity.


Assuntos
Células Matadoras Naturais/metabolismo , Subpopulações de Linfócitos/metabolismo , Receptores de Quimiocinas/biossíntese , Antígeno CD56/metabolismo , Células Cultivadas , Quimiotaxia de Leucócito/imunologia , Citometria de Fluxo , Humanos , Células Matadoras Naturais/citologia , Subpopulações de Linfócitos/citologia
12.
J Immunol ; 174(11): 7341-51, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15905581

RESUMO

Although chemokines CCL3/MIP-1alpha and CCL5/RANTES are considered to be primary CCR1 ligands in inflammatory responses, alternative CCR1 ligands have also been described. Indeed, four such chemokines, CCL6/C10/MIP-related protein-1, CCL9/MIP-1gamma/MIP-related protein-2, CCL15/MIP-1delta/hemofiltrate CC chemokine-2/leukotactin-1, and CCL23/CKbeta8/myeloid progenitor inhibitory factor-1, are unique in possessing a separately encoded N-terminal domain of 16-20 residues and two additional precisely positioned cysteines that form a third disulfide bridge. In vitro, these four chemokines are weak CCR1 agonists, but potency can be increased up to 1000-fold by engineered or expression-associated N-terminal truncations. We examined the ability of proinflammatory proteases, human cell supernatants, or physiological fluids to perform N-terminal truncations of these chemokines and thereby activate their functions. Remarkably, most of the proteases and fluids removed the N-terminal domains from all four chemokines, but were relatively unable to cleave the truncated forms further. The truncated chemokines exhibited up to 1000-fold increases in CCR1-mediated signaling and chemotaxis assays in vitro. In addition, N-terminally truncated CCL15/MIP-1delta and CCL23/CKbeta8, but not CCL3/MIP-1alpha or CCL5/RANTES, were detected at relatively high levels in synovial fluids from rheumatoid arthritis patients. These data suggest that alternative CCR1 ligands are converted into potent chemoattractants by proteases released during inflammatory responses in vivo.


Assuntos
Catepsinas/metabolismo , Mediadores da Inflamação/metabolismo , Elastase Pancreática/metabolismo , Receptores de Quimiocinas/metabolismo , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Catepsina G , Linhagem Celular Tumoral , Células Cultivadas , Quimiocinas CC/biossíntese , Quimiocinas CC/metabolismo , Quimases , Humanos , Hidrólise , Ligantes , Proteínas Inflamatórias de Macrófagos/metabolismo , Camundongos , Dados de Sequência Molecular , Monocinas/biossíntese , Monocinas/metabolismo , Estrutura Terciária de Proteína , Receptores CCR1 , Receptores de Quimiocinas/fisiologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Líquido Sinovial/enzimologia , Líquido Sinovial/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA