RESUMO
An emerging number of rare genetic disorders termed ciliopathies are associated with pediatric obesity. It is becoming clear that the mechanisms associated with cilia dysfunction and obesity in these syndromes are complex. In addition to ciliopathic syndromic forms of obesity, several cilia-associated signaling gene mutations also lead to morbid obesity. While cilia have critical and diverse functions in energy homeostasis including their roles in centrally mediated food intake as well as in peripheral tissues, many questions remain. Here, we briefly discuss the syndromic ciliopathies and monoallelic cilia signaling gene mutations associated with obesity. We also describe potential ways cilia may be involved in common obesity. We discuss how neuronal cilia impact food intake potentially through leptin signaling and changes in ciliary G protein-coupled receptor (GPCR) signaling. We highlight several recent studies that have implicated the potential for cilia in peripheral tissues such as adipose and the pancreas to contribute to metabolic dysfunction. Then we discuss the potential for cilia to impact energy homeostasis through their roles in both development and adult tissue homeostasis. The studies discussed in this review highlight how a comprehensive understanding of the requirement of cilia for the regulation of diverse biological functions will contribute to our understanding of common forms of obesity.
Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Cílios/metabolismo , Ciliopatias/genética , Leptina/genética , Obesidade Mórbida/genética , Obesidade Infantil/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adulto , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Criança , Cílios/patologia , Ciliopatias/metabolismo , Ciliopatias/patologia , Ingestão de Alimentos/genética , Regulação da Expressão Gênica , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Leptina/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Obesidade Mórbida/metabolismo , Obesidade Mórbida/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Obesidade Infantil/metabolismo , Obesidade Infantil/patologia , Transdução de SinaisRESUMO
Primary cilia are critical sensory and signaling compartments present on most mammalian cell types. These specialized structures require a unique signaling protein composition relative to the rest of the cell to carry out their functions. Defects in ciliary structure and signaling result in a broad group of disorders collectively known as ciliopathies. One ciliopathy, Bardet-Biedl syndrome (BBS; OMIM 209900), presents with diverse clinical features, many of which are attributed to defects in ciliary signaling during both embryonic development and postnatal life. For example, patients exhibit obesity, polydactyly, hypogonadism, developmental delay and skeletal abnormalities along with sensory and cognitive deficits, but for many of these phenotypes it is uncertain, which are developmental in origin. A subset of BBS proteins assembles into the core BBSome complex, which is responsible for mediating transport of membrane proteins into and out of the cilium, establishing it as a sensory and signaling hub. Here, we describe two new mouse models for BBS resulting from a targeted LacZ gene trap allele (Bbs5-/-) that is a predicted congenital null mutation and conditional (Bbs5flox/flox) allele of Bbs5. Bbs5-/- mice develop a complex phenotype consisting of increased pre-weaning lethality craniofacial and skeletal defects, ventriculomegaly, infertility and pituitary anomalies. Utilizing the conditional allele, we show that the male fertility defects, ventriculomegaly and pituitary abnormalities are only present when Bbs5 is disrupted prior to postnatal day 7, indicating a developmental origin. In contrast, mutation of Bbs5 results in obesity, independent of the age of Bbs5 loss.
Assuntos
Síndrome de Bardet-Biedl/metabolismo , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Mutação , Proteínas de Ligação a Fosfato/genética , Hipófise/anormalidades , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Síndrome de Bardet-Biedl/fisiopatologia , Proteínas do Citoesqueleto/metabolismo , Masculino , Camundongos , Fenótipo , Proteínas de Ligação a Fosfato/metabolismo , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismoRESUMO
N-methyl-d-aspartate receptors (NMDARs) are calcium-permeable ion channels that are ubiquitously expressed within the glutamatergic postsynaptic density. Phosphorylation of NMDAR subunits defines receptor conductance and surface localization, two alterations that can modulate overall channel activity. Modulation of NMDAR phosphorylation by kinases and phosphatases regulates the amount of calcium entering the cell and subsequent activation of calcium-dependent processes. The dendritic spine enriched protein, spinophilin, is the major synaptic protein phosphatase 1 (PP1) targeting protein. Depending on the substrate, spinophilin can act as either a PP1 targeting protein, to permit substrate dephosphorylation, or a PP1 inhibitory protein, to enhance substrate phosphorylation. Spinophilin limits NMDAR function in a PP1-dependent manner. Specifically, we have previously shown that spinophilin sequesters PP1 away from the GluN2B subunit of the NMDAR, which results in increased phosphorylation of Ser-1284 on GluN2B. However, how spinophilin modifies NMDAR function is unclear. Herein, we utilize a Neuro2A cell line to detail that Ser-1284 phosphorylation increases calcium influx via GluN2B-containing NMDARs. Moreover, overexpression of spinophilin decreases GluN2B-containing NMDAR activity by decreasing its surface expression, an effect that is independent of Ser-1284 phosphorylation. In hippocampal neurons isolated from spinophilin knockout animals, there is an increase in cleaved caspase-3 levels, a marker of calcium-associated apoptosis, compared with wildtype mice. Taken together, our data demonstrate that spinophilin regulates GluN2B containing NMDAR phosphorylation, channel function, and trafficking and that loss of spinophilin enhances neuronal cleaved caspase-3 expression.
Assuntos
Cálcio , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Cálcio/metabolismo , Caspase 3/metabolismo , Caspases/metabolismoRESUMO
BACKGROUND: Genetic tools to study gene function and the fate of cells in the anterior limb bud are very limited. RESULTS: We describe a transgenic mouse line expressing CreERT2 from the Aristaless-like 4 (Alx4) promoter that induces recombination in the anterior limb. Cre induction at embryonic day 8.5 revealed that Alx4-CreERT2 labeled cells using the mTmG Cre reporter contributed to anterior digits I to III as well as the radius of the forelimb. Cre activity is expanded further along the AP axis in the hindlimb than in the forelimb resulting in some Cre reporter cells contributing to digit IV. Induction at later time points labeled cells that become progressively restricted to more anterior digits and proximal structures. Comparison of Cre expression from the Alx4 promoter transgene with endogenous Alx4 expression reveals Cre expression is slightly expanded posteriorly relative to the endogenous Alx4 expression. Using Alx4-CreERT2 to induce loss of intraflagellar transport 88 (Ift88), a gene required for ciliogenesis, hedgehog signaling, and limb patterning, did not cause overt skeletal malformations. However, the efficiency of deletion, time needed for Ift88 protein turnover, and for cilia to regress may hinder using this approach to analyze cilia in the limb. Alx4-CreERT2 is also active in the mesonephros and nephric duct that contribute to the collecting tubules and ducts of the adult nephron. Embryonic activation of the Alx4-CreERT2 in the Ift88 conditional line results in cyst formation in the collecting tubules/ducts. CONCLUSION: Overall, the Alx4-CreERT2 line will be a new tool to assess cell fates and analyze gene function in the anterior limb, mesonephros, and nephric duct.
Assuntos
Proteínas Hedgehog , Fatores de Transcrição , Animais , Extremidades , Proteínas Hedgehog/genética , Proteínas de Homeodomínio , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Fatores de Transcrição/genética , TransgenesRESUMO
Cilia on neurons play critical roles in both the development and function of the central nervous system (CNS). While it remains challenging to elucidate the precise roles for neuronal cilia, it is clear that a subset of G-protein-coupled receptors (GPCRs) preferentially localize to the cilia membrane. Further, ciliary GPCR signaling has been implicated in regulating a variety of behaviors. Melanin concentrating hormone receptor 1 (MCHR1), is a GPCR expressed centrally in rodents known to be enriched in cilia. Here we have used MCHR1 as a model ciliary GPCR to develop a strategy to fluorescently tag receptors expressed from the endogenous locus in vivo. Using CRISPR/Cas9, we inserted the coding sequence of the fluorescent protein mCherry into the N-terminus of Mchr1. Analysis of the fusion protein (mCherry MCHR1) revealed its localization to neuronal cilia in the CNS, across multiple developmental time points and in various regions of the adult brain. Our approach simultaneously produced fortuitous in/dels altering the Mchr1 start codon resulting in a new MCHR1 knockout line. Functional studies using electrophysiology show a significant alteration of synaptic strength in MCHR1 knockout mice. A reduction in strength is also detected in mice homozygous for the mCherry insertion, suggesting that while the strategy is useful for monitoring the receptor, activity could be altered. However, both lines should aid in studies of MCHR1 function and contribute to our understanding of MCHR1 signaling in the brain. Additionally, this approach could be expanded to aid in the study of other ciliary GPCRs.
Assuntos
Melaninas/metabolismo , Neurônios/metabolismo , Receptores de Somatostatina/metabolismo , Alelos , Animais , Cílios/metabolismo , Homozigoto , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Receptores de Somatostatina/genética , Sinapses/metabolismo , Sinapses/fisiologia , Potenciais SinápticosRESUMO
The transition zone (TZ) is a domain at the base of the cilium that is involved in maintaining ciliary compartment-specific sensory and signaling activity by regulating cilia protein composition. Mutations in TZ proteins result in cilia dysfunction, often causing pleiotropic effects observed in a group of human diseases classified as ciliopathies. The purpose of this study is to describe the importance of the TZ component Meckel-Grüber syndrome 6 ( Mks6) in several organ systems and tissues regarding ciliogenesis and cilia maintenance using congenital and conditional mutant mouse models. Similar to MKS, congenital loss of Mks6 is embryonic lethal, displaying cilia loss and altered cytoskeletal microtubule modifications but only in specific cell types. Conditional Mks6 mutants have a variable cystic kidney phenotype along with severe retinal degeneration with mislocalization of phototransduction cascade proteins. However, other phenotypes, such as anosmia and obesity, which are typically associated with cilia and TZ dysfunction, were not evident. These data indicate that despite Mks6 being a core TZ component, it has tissue- or cell type-specific functions important for cilia formation and cilia sensory and signaling activities. Lewis, W. R., Bales, K. L., Revell, D. Z., Croyle, M. J., Engle, S. E., Song, C. J., Malarkey, E. B., Uytingco, C. R., Shan, D., Antonellis, P. J., Nagy, T. R., Kesterson, R. A., Mrug, M. M., Martens, J. R., Berbari, N. F., Gross, A. K., Yoder, B. K. Mks6 mutations reveal tissue- and cell type-specific roles for the cilia transition zone.
Assuntos
Cílios/metabolismo , Proteínas do Citoesqueleto/genética , Mutação , Acetilação , Animais , Transtornos da Motilidade Ciliar/genética , Citoplasma/metabolismo , Encefalocele/genética , Feminino , Genes Letais , Doenças Renais Císticas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Transtornos do Olfato/genética , Fenótipo , Doenças Renais Policísticas/genética , Degeneração Retiniana/genética , Retinose Pigmentar/genética , Tubulina (Proteína)/metabolismo , Aumento de Peso/genéticaRESUMO
Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or 'primary' cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh) signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400). While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8). GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC) protein 4 (DRC4) where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR) to generate one of these human missense variants in mice demonstrated that this allele is likely pathogenic.
Assuntos
Padronização Corporal/genética , Cílios/genética , Síndrome de Kartagener/genética , Proteínas/genética , Animais , Movimento Celular/genética , Chlamydomonas/genética , Cílios/patologia , Proteínas do Citoesqueleto , Citoesqueleto/genética , Modelos Animais de Doenças , Extremidades/crescimento & desenvolvimento , Extremidades/patologia , Predisposição Genética para Doença , Humanos , Síndrome de Kartagener/patologia , Camundongos , Microtúbulos/genética , Mutação , Tubo Neural/crescimento & desenvolvimento , Tubo Neural/patologia , Transdução de Sinais/genéticaRESUMO
The neuropeptide, melanin concentrating hormone (MCH), and its G protein-coupled receptor, melanin concentrating hormone receptor 1 (Mchr1), are expressed centrally in adult rodents. MCH signaling has been implicated in diverse behaviors such as feeding, sleep, anxiety, as well as addiction and reward. While a model utilizing the Mchr1 promoter to drive constitutive expression of Cre recombinase (Mchr1-Cre) exists, there is a need for an inducible Mchr1-Cre to determine the roles for this signaling pathway in neural development and adult neuronal function. Here, we generated a BAC transgenic mouse where the Mchr1 promotor drives expression of tamoxifen inducible CreER recombinase. Many aspects of the Mchr1-Cre expression pattern are recapitulated by the Mchr1-CreER model, though there are also notable differences. Most strikingly, compared to the constitutive model, the new Mchr1-CreER model shows strong expression in adult animals in hypothalamic brain regions involved in feeding behavior but diminished expression in regions involved in reward, such as the nucleus accumbens. The inducible Mchr1-CreER allele will help reveal the potential for Mchr1 signaling to impact neural development and subsequent behavioral phenotypes, as well as contribute to the understanding of the MCH signaling pathway in terminally differentiated adult neurons and the diverse behaviors that it influences.
Assuntos
Hormônios Hipotalâmicos/fisiologia , Melaninas/fisiologia , Hormônios Hipofisários/fisiologia , Receptores de Somatostatina/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Integrases , Melaninas/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Animais , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Hormônios Hipofisários/metabolismo , Receptores de Somatostatina/metabolismo , Transdução de Sinais , TamoxifenoRESUMO
Previously, we determined microRNA-31 (miR-31) is a noncoding tumor suppressive gene frequently deleted in glioblastoma (GBM); miR-31 suppresses tumor growth, in part, by limiting the activity of NF-κB. Herein, we expand our previous studies by characterizing the role of miR-31 during neural precursor cell (NPC) to astrocyte differentiation. We demonstrate that miR-31 expression and activity is suppressed in NPCs by stem cell factors such as Lin28, c-Myc, SOX2 and Oct4. However, during astrocytogenesis, miR-31 is induced by STAT3 and SMAD1/5/8, which mediate astrocyte differentiation. We determined miR-31 is required for terminal astrocyte differentiation, and that the loss of miR-31 impairs this process and/or prevents astrocyte maturation. We demonstrate that miR-31 promotes astrocyte development, in part, by reducing the levels of Lin28, a stem cell factor implicated in NPC renewal. These data suggest that miR-31 deletions may disrupt astrocyte development and/or homeostasis.
Assuntos
Astrócitos/metabolismo , Diferenciação Celular/fisiologia , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Células Cultivadas , Imunofluorescência , Immunoblotting , Hibridização In Situ , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Xenopus laevisRESUMO
Spermiogenesis is the differentiation of spermatids into motile sperm consisting of a head and a tail. The head harbors a condensed elongated nucleus partially covered by the acrosome-acroplaxome complex. Defects in the acrosome-acroplaxome complex are associated with abnormalities in sperm head shaping. The head-tail coupling apparatus (HTCA), a complex structure consisting of two cylindrical microtubule-based centrioles and associated components, connects the tail or flagellum to the sperm head. Defects in the development of the HTCA cause sperm decapitation and disrupt sperm motility, two major contributors to male infertility. Here, we provide data indicating that mutations in the gene Coiled-coil domain containing 42 (Ccdc42) is associated with malformation of the mouse sperm flagella. In contrast to many other flagella and motile cilia genes, Ccdc42 expression is only observed in the brain and developing sperm. Male mice homozygous for a loss-of-function Ccdc42 allele (Ccdc42(KO)) display defects in the number and location of the HTCA, lack flagellated sperm, and are sterile. The testes enriched expression of Ccdc42 and lack of other phenotypes in mutant mice make it an ideal candidate for screening cases of azoospermia in humans.
Assuntos
Fertilidade/genética , Proteínas/genética , Cabeça do Espermatozoide/metabolismo , Cauda do Espermatozoide/metabolismo , Espermatozoides/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Cabeça do Espermatozoide/ultraestrutura , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/ultraestrutura , Espermátides/crescimento & desenvolvimento , Espermátides/metabolismo , Espermátides/ultraestrutura , Espermatogênese/genética , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/ultraestrutura , Testículo/citologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Tetrahymena thermophila/citologia , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismoRESUMO
Most central neurons in the mammalian brain possess an appendage called a primary cilium that projects from the soma into the extracellular space. The importance of these organelles is highlighted by the fact that primary cilia dysfunction is associated with numerous neuropathologies, including hyperphagia-induced obesity, hypogonadism, and learning and memory deficits. Neuronal cilia are enriched for signaling molecules, including certain G protein-coupled receptors (GPCRs), suggesting that neuronal cilia sense and respond to neuromodulators in the extracellular space. However, the impact of cilia on signaling to central neurons has never been demonstrated. Here, we show that the kisspeptin receptor (Kiss1r), a GPCR that is activated by kisspeptin to regulate the onset of puberty and adult reproductive function, is enriched in cilia projecting from mouse gonadotropin-releasing hormone (GnRH) neurons. Interestingly, GnRH neurons in adult animals are multiciliated and the percentage of GnRH neurons possessing multiple Kiss1r-positive cilia increases during postnatal development in a progression that correlates with sexual maturation. Remarkably, disruption of cilia selectively on GnRH neurons leads to a significant reduction in kisspeptin-mediated GnRH neuronal activity. To our knowledge, this result is the first demonstration of cilia disruption affecting central neuronal activity and highlights the importance of cilia for proper GPCR signaling.
Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Reprodução/fisiologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Cílios/genética , Cílios/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/genética , Kisspeptinas/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Receptores Acoplados a Proteínas G/genética , Receptores de Kisspeptina-1 , Maturidade Sexual/fisiologiaRESUMO
Although primary cilia are well established as important sensory and signaling structures, their function in most tissues remains unknown. Obesity is a feature associated with some syndromes of cilia dysfunction, such as Bardet-Biedl syndrome (BBS) and Alström syndrome, as well as in several cilia mutant mouse models. Recent data indicate that obesity in BBS mutant mice is due to defects in leptin receptor trafficking and leptin resistance. Furthermore, induction of cilia loss in leptin-responsive proopiomelanocortin neurons results in obesity, implicating cilia on hypothalamic neurons in regulating feeding behavior. Here, we directly test the importance of the cilium as a mediator of the leptin response. In contrast to the current dogma, a longitudinal study of conditional Ift88 cilia mutant mice under different states of adiposity indicates that leptin resistance is present only when mutants are obese. Our studies show that caloric restriction leads to an altered anticipatory feeding behavior that temporarily abrogates the anorectic actions of leptin despite normalized circulating leptin levels. Interestingly, preobese Bbs4 mutant mice responded to the anorectic effects of leptin and did not display other phenotypes associated with defective leptin signaling. Furthermore, thermoregulation and activity measurements in cilia mutant mice are inconsistent with phenotypes previously observed in leptin deficient ob/ob mice. Collectively, these data indicate that cilia are not directly involved in leptin responses and that a defect in the leptin signaling axis is not the initiating event leading to hyperphagia and obesity associated with cilia dysfunction.
Assuntos
Cílios/patologia , Leptina/metabolismo , Obesidade/metabolismo , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Composição Corporal , Modelos Animais de Doenças , Comportamento Alimentar , Camundongos , Camundongos Obesos , Camundongos Transgênicos , Atividade Motora , Mutação , Neurônios/metabolismo , Obesidade/genética , Obesidade/patologia , Fenótipo , Transdução de Sinais , TemperaturaRESUMO
Disrupting the function of cilia in mouse kidneys results in rapid or slow progression of cystic disease depending on whether the animals are juveniles or adults, respectively. Renal injury can also markedly accelerate the renal cyst formation that occurs after disruption of cilia in adult mice. Rates of cell proliferation are markedly higher in juvenile than adult kidneys and increase after renal injury, suggesting that cell proliferation may enhance the development of cysts. Here, we induced cilia loss in the kidneys of adult mice in the presence or absence of a Cux-1 transgene, which maintains cell proliferation. By using this model, we were able to avoid additional factors such as inflammation and dedifferentiation, which associate with renal injury and may also influence the rate of cystogenesis. After induction of cilia loss, cystic disease was not more pronounced in adult mice with the Cux-1 transgene compared with those without the transgene. In conclusion, these data suggest that proliferation is unlikely to be the sole mechanism underlying the rapid cystogenesis observed after injury in mice that lose cilia function in adulthood.
Assuntos
Cílios/patologia , Doenças Renais Císticas/etiologia , Doenças Renais Císticas/patologia , Túbulos Renais Proximais/patologia , Animais , Proliferação de Células , Cílios/fisiologia , Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/fisiologia , Tamoxifeno/farmacologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologiaRESUMO
Primary cilia are hair-like structures found on nearly all mammalian cell types, including cells in the developing and adult brain. A diverse set of receptors and signaling proteins localize within cilia to regulate many physiological and developmental pathways, including the Hedgehog (Hh) pathway. Defects in cilia structure, protein localization, and function lead to genetic disorders called ciliopathies, which present with various clinical features that include several neurodevelopmental phenotypes and hyperphagia-associated obesity. Despite their dysfunction being implicated in several disease states, understanding their roles in central nervous system (CNS) development and signaling has proven challenging. We hypothesize that dynamic changes to ciliary protein composition contribute to this challenge and may reflect unrecognized diversity of CNS cilia. The proteins ARL13B and ADCY3 are established markers of cilia in the brain. ARL13B is a regulatory GTPase important for regulating cilia structure, protein trafficking, and Hh signaling, and ADCY3 is a ciliary adenylyl cyclase. Here, we examine the ciliary localization of ARL13B and ADCY3 in the perinatal and adult mouse brain. We define changes in the proportion of cilia enriched for ARL13B and ADCY3 depending on brain region and age. Furthermore, we identify distinct lengths of cilia within specific brain regions of male and female mice. ARL13B+ cilia become relatively rare with age in many brain regions, including the hypothalamic feeding centers, while ADCY3 becomes a prominent cilia marker in the mature adult brain. It is important to understand the endogenous localization patterns of these proteins throughout development and under different physiological conditions as these common cilia markers may be more dynamic than initially expected. Understanding regional- and developmental-associated cilia protein composition signatures and physiological condition cilia dynamic changes in the CNS may reveal the molecular mechanisms associated with the features commonly observed in ciliopathy models and ciliopathies, like obesity and diabetes.
Assuntos
Ciliopatias , Proteínas Hedgehog , Animais , Feminino , Masculino , Camundongos , Fatores de Ribosilação do ADP/metabolismo , Encéfalo/metabolismo , Proteínas Hedgehog/metabolismo , Mamíferos/metabolismo , ObesidadeRESUMO
Cilia are near ubiquitous small, cellular appendages critical for cell-to-cell communication. As such, they are involved in diverse developmental and homeostatic processes, including energy homeostasis. ARL13B is a regulatory GTPase highly enriched in cilia. Mice expressing an engineered ARL13B variant, ARL13BV358A which retains normal biochemical activity, display no detectable ciliary ARL13B. Surprisingly, these mice become obese. Here, we measured body weight, food intake, and blood glucose levels to reveal these mice display hyperphagia and metabolic defects. We showed that ARL13B normally localizes to cilia of neurons in specific brain regions and pancreatic cells but is excluded from these cilia in the Arl13bV358A/V358A model. In addition to its GTPase function, ARL13B acts as a guanine nucleotide exchange factor (GEF) for ARL3. To test whether ARL13B's GEF activity is required to regulate body weight, we analyzed the body weight of mice expressing ARL13BR79Q, a variant that lacks ARL13B GEF activity for ARL3. We found no difference in body weight. Taken together, our results show that ARL13B functions within cilia to control body weight and that this function does not depend on its role as a GEF for ARL3. Controlling the subcellular localization of ARL13B in the engineered mouse model, ARL13BV358A, enables us to define the cilia-specific role of ARL13B in regulating energy homeostasis.
RESUMO
Primary cilia have been involved in the development and mechanosensation of various tissue types, including bone. In this study, we explored the mechanosensory role of primary cilia in bone growth and adaptation by examining two cilia specific genes, IFT88 and MKS5, required for proper cilia assembly and function. To analyze the role of primary cilia in osteoblasts, Osx1-GFP:Cre mice were bred with IFT88 LoxP/LoxP to generate mice with a conditional knockout of primary cilia in osteoblasts. A significant decrease in body weight was observed in both male (p=0.0048) and female (p=0.0374) conditional knockout (cKO) mice compared to the wild type (WT) controls. The femurs of cKO mice were significantly shorter than that of the WT mice of both male (p=0.0003) and female (p=0.0019) groups. Histological analysis revealed a significant difference in MAR (p=0.0005) and BFR/BS (p<0.0001) between female cKO and WT mice. The BFR/BS of male cKO mice was 58.03% lower compared to WT mice. To further investigate the role of primary cilia in osteocytes, Dmp1-8kb-Cre mice were crossed with MKS5 LoxP/LoxP to generate mice with defective cilia in osteocytes. In vivo axial ulnar loading was performed on 16-week-old mice for 3 consecutive days. The right ulnae were loaded for 120 cycles/day at a frequency of 2Hz with a peak force of 2.9N for female mice and 3.2N for male mice. Load-induced bone formation was measured using histomorphometry. The relative values of MS/BS, MAR and BFR/BS (loaded ulnae minus nonloaded ulnae) in male MKS5 cKO mice were decreased by 24.88%, 46.27% and 48.24%, respectively, compared to the controls. In the female groups, the rMS/BS was 52.5% lower, the rMAR was 27.58% lower, and the rBFR/BS was 41.54% lower in MKS5 cKO mice than the WT group. Histological analysis indicated that MKS5 cKO mice showed significantly decreased response to mechanical loading compared to the controls. Taken together, these data highlight a critical role of primary cilia in bone development and mechanotransduction, suggesting that the presence of primary cilia in osteoblasts play an important role in skeletal development, and primary cilia in osteocytes mediate mechanically induced bone formation.
RESUMO
Primary cilia are cellular appendages critical for diverse types of Signaling. They are found on most cell types, including cells throughout the CNS. Cilia preferentially localize certain G-protein-coupled receptors (GPCRs) and are critical for mediating the signaling of these receptors. Several of these neuronal GPCRs have recognized roles in feeding behavior and energy homeostasis. Cell and model systems, such as Caenorhabditis elegans and Chlamydomonas, have implicated both dynamic GPCR cilia localization and cilia length and shape changes as key for signaling. It is unclear whether mammalian ciliary GPCRs use similar mechanisms in vivo and under what conditions these processes may occur. Here, we assess two neuronal cilia GPCRs, melanin-concentrating hormone receptor 1 (MCHR1) and neuropeptide-Y receptor 2 (NPY2R), as mammalian model ciliary receptors in the mouse brain. We test the hypothesis that dynamic localization to cilia occurs under physiological conditions associated with these GPCR functions. Both receptors are involved in feeding behaviors, and MCHR1 is also associated with sleep and reward. Cilia were analyzed with a computer-assisted approach allowing for unbiased and high-throughput analysis. We measured cilia frequency, length, and receptor occupancy. We observed changes in ciliary length, receptor occupancy, and cilia frequency under different conditions for one receptor but not another and in specific brain regions. These data suggest that dynamic cilia localization of GPCRs depends on properties of individual receptors and cells where they are expressed. A better understanding of subcellular localization dynamics of ciliary GPCRs could reveal unknown molecular mechanisms regulating behaviors like feeding.
Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Camundongos , Animais , Receptores Acoplados a Proteínas G/metabolismo , Encéfalo/metabolismo , Caenorhabditis elegans , Mamíferos/metabolismoRESUMO
Primary cilia are conserved organelles that integrate extracellular cues into intracellular signals and are critical for diverse processes, including cellular development and repair responses. Deficits in ciliary function cause multisystemic human diseases known as ciliopathies. In the eye, atrophy of the retinal pigment epithelium (RPE) is a common feature of many ciliopathies. However, the roles of RPE cilia in vivo remain poorly understood. In this study, we first found that mouse RPE cells only transiently form primary cilia. We then examined the RPE in the mouse model of Bardet-Biedl Syndrome 4 (BBS4), a ciliopathy associated with retinal degeneration in humans, and found that ciliation in BBS4 mutant RPE cells is disrupted early during development. Next, using a laser-induced injury model in vivo, we found that primary cilia in RPE reassemble in response to laser injury during RPE wound healing and then rapidly disassemble after the repair is completed. Finally, we demonstrated that RPE-specific depletion of primary cilia in a conditional mouse model of cilia loss promoted wound healing and enhanced cell proliferation. In summary, our data suggest that RPE cilia contribute to both retinal development and repair and provide insights into potential therapeutic targets for more common RPE degenerative diseases.
Assuntos
Ciliopatias , Degeneração Retiniana , Camundongos , Humanos , Animais , Epitélio Pigmentado da Retina , Cílios/fisiologia , Modelos Animais de Doenças , Proteínas Supressoras de Tumor , Proteínas Associadas aos MicrotúbulosRESUMO
Tumor necrosis factor alpha receptor 3 interacting protein 1 (Traf3ip1), also known as MIPT3, was initially characterized through its interactions with tubulin, actin, TNFR-associated factor-3 (Traf3), IL-13R1, and DISC1. It functions as an inhibitor of IL-13-mediated phosphorylation of Stat6 and in sequestration of Traf3 and DISC1 to the cytoskeleton. Studies of the Traf3ip1 homologs in C. elegans (DYF-11), Zebrafish (elipsa), and Chlamydomonas (IFT54) revealed that the protein localizes to the cilium and is required for ciliogenesis. Similar localization data has now been reported for mammalian Traf3ip1. This raises the possibility that Traf3ip1 has an evolutionarily conserved role in mammalian ciliogenesis in addition to its previously indicated functions. To evaluate this possibility, a Traf3ip1 mutant mouse line was generated. Traf3ip1 mutant cells are unable to form cilia. Homozygous Traf3ip1 mutant mice are not viable and have both neural developmental defects and polydactyly, phenotypes typical of mouse mutants with ciliary assembly defects. Furthermore, in Traf3ip1 mutants the hedgehog pathway is disrupted, as evidenced by abnormal dorsal-ventral neural tube patterning and diminished expression of a hedgehog reporter. Analysis of the canonical Wnt pathway indicates that it was largely unaffected; however, specific domains in the pharyngeal arches have elevated levels of reporter activity. Interestingly, Traf3ip1 mutant embryos and cells failed to show alterations in IL-13 signaling, one of the pathways associated with its initial discovery. Novel phenotypes observed in Traf3ip1 mutant cells include elevated cytosolic levels of acetylated microtubules and a marked increase in cell size in culture. The enlarged Traf3ip1 mutant cell size was associated with elevated basal mTor pathway activity. Taken together, these data demonstrate that Traf3ip1 function is highly conserved in ciliogenesis and is important for proper regulation of a number of essential developmental and cellular pathways. The Traf3ip1 mutant mouse and cell lines will provide valuable resources to assess cilia function in mammalian development and also serve as a tool to explore the potential connections between cilia and cytoskeletal dynamics, mTor regulation, and cell volume control.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Tamanho Celular , Cílios/genética , Cílios/fisiologia , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Mutação , Animais , Feminino , Proteínas Hedgehog/metabolismo , Interleucina-13/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Tubo Neural/embriologia , Tubo Neural/metabolismo , Gravidez , Transdução de Sinais , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/fisiologiaRESUMO
A subset of genetic disorders termed ciliopathies are associated with obesity. The mechanisms behind cilia dysfunction and altered energy homeostasis in these syndromes are complex and likely involve deficits in both development and adult homeostasis. Interestingly, several cilia-associated gene mutations also lead to morbid obesity. While cilia have critical and diverse functions in energy homeostasis, including their roles in centrally mediated food intake and peripheral tissues, many questions remain. Here, we briefly discuss syndromic ciliopathies and monogenic cilia signaling mutations associated with obesity. We then focus on potential ways neuronal cilia regulate energy homeostasis. We discuss the literature around cilia and leptin-melanocortin signaling and changes in ciliary G protein-coupled receptor (GPCR) signaling. We also discuss the different brain regions where cilia are implicated in energy homeostasis and the potential for cilia dysfunction in neural development to contribute to obesity. We close with a short discussion on the challenges and opportunities associated with studies looking at neuronal cilia and energy homeostasis. This review highlights how neuronal cilia-mediated signaling is critical for proper energy homeostasis.