Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Glob Chang Biol ; 26(3): 1446-1457, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31833116

RESUMO

The loss of canopy-forming seaweeds from urbanized coasts has intensified in response to warming seas and non-climatic pressures such as population growth and declining water quality. Surprisingly, there has been little information on the extent of historical losses in the South-western Atlantic, which limits our ability to place this large marine ecosystem in a global context. Here, we use meta-analysis to examine long-term (1969-2017) changes to the cover and biomass of Sargassum spp. and structurally simple algal turfs along more than 1,000 kilometres of Brazil's warm temperate coastline. Analysis revealed major declines in canopy cover that were independent of season (i.e., displaying similar trends for both summer and winter) but varied with coastal environmental setting, whereby sheltered bays experienced greater losses than coastal locations. On average, covers of Sargassum spp. declined by 2.6% per year, to show overall losses of 52% since records began (ranging from 20% to 89%). This contrasted with increases in the cover of filamentous turfs (24% over the last 27 years) which are known to proliferate along human-impacted coasts. To test the relative influence of climatic versus non-climatic factors as drivers of this apparent canopy-to-turf shift, we examined how well regional warming trends (decadal changes to sea surface temperature) and local proxies of coastal urbanization (population density, thermal pollution, turbidity and nutrient inputs) were able to predict the changes in seaweed communities. Our results revealed that the most pronounced canopy losses over the past 50 years were at sites exhibiting the greatest degree of coastal warming, the highest population growth and those located in semi-enclosed sheltered bays. These findings contribute knowledge on the drivers of canopy loss in the South-western Atlantic and join with global efforts to understand and mitigate declines of marine keystone species.


Assuntos
Ecossistema , Alga Marinha , Biomassa , Brasil , Oceanos e Mares
3.
Sci Total Environ ; 892: 164818, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37315600

RESUMO

Global marine conservation remains fractured by an imbalance in research efforts and policy actions, limiting progression towards sustainability. Rhodolith beds represent a prime example, as they have ecological importance on a global scale, provide a wealth of ecosystem functions and services, including biodiversity provision and potential climate change mitigation, but remain disproportionately understudied, compared to other coastal ecosystems (tropical coral reefs, kelp forests, mangroves, seagrasses). Although rhodolith beds have gained some recognition, as important and sensitive habitats at national/regional levels during the last decade, there is still a notable lack of information and, consequently, specific conservation efforts. We argue that the lack of information about these habitats, and the significant ecosystem services they provide, is hindering the development of effective conservation measures and limiting wider marine conservation success. This is becoming a pressing issue, considering the multiple severe pressures and threats these habitats are exposed to (e.g., pollution, fishing activities, climate change), which may lead to an erosion of their ecological function and ecosystem services. By synthesizing the current knowledge, we provide arguments to highlight the importance and urgency of levelling-up research efforts focused on rhodolith beds, combating rhodolith bed degradation and avoiding the loss of associated biodiversity, thus ensuring the sustainability of future conservation programs.


Assuntos
Biodiversidade , Ecossistema , Recifes de Corais , Poluição Ambiental , Florestas , Conservação dos Recursos Naturais
4.
Glob Chang Biol ; 19(7): 1965-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23504820

RESUMO

As the effects of the Global Climate Changes on the costal regions of Central and South Americas advance, there is proportionally little research being made to understand such impacts. This commentary puts forward a series of propositions of strategies to improve performance of Central and South American science and policy making in order to cope with the future impacts of the Global Climate Changes in their coastal habitats.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental/métodos , Animais , Conservação dos Recursos Naturais/legislação & jurisprudência , Monitoramento Ambiental/legislação & jurisprudência , Programas Governamentais , América Latina , Política
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA