Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Scand J Immunol ; : e13395, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973149

RESUMO

The prevalence and disease burden of chronic inflammatory diseases (CIDs) are predicted to rise. Patients are commonly treated with biological agents, but the individual treatment responses vary, warranting further research into optimizing treatment strategies. This study aimed to compare the clinical treatment responses in patients with CIDs initiating biologic therapy based on smoking status, a notorious risk factor in CIDs. In this multicentre cohort study including 233 patients with a diagnosis of Crohn's disease, ulcerative colitis, rheumatoid arthritis, axial spondyloarthritis, psoriatic arthritis or psoriasis initiating biologic therapy, we compared treatment response rates after 14 to 16 weeks and secondary outcomes between smokers and non-smokers. We evaluated the contrast between groups using logistic regression models: (i) a "crude" model, only adjusted for the CID type, and (ii) an adjusted model (including sex and age). Among the 205 patients eligible for this study, 53 (26%) were smokers. The treatment response rate among smokers (n = 23 [43%]) was lower compared to the non-smoking CID population (n = 92 [61%]), corresponding to a "crude" OR of 0.51 (95% CI: [0.26;1.01]) while adjusting for sex and age resulted in consistent findings: 0.51 [0.26;1.02]. The contrast was apparently most prominent among the 38 RA patients, with significantly lower treatment response rates for smokers in both the "crude" and adjusted models (adjusted OR 0.13, [0.02;0.81]). Despite a significant risk of residual confounding, patients with CIDs (rheumatoid arthritis in particular) should be informed that smoking probably lowers the odds of responding sufficiently to biological therapy. Registration: Clinical.Trials.gov NCT03173144.

2.
Front Nutr ; 9: 985732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313095

RESUMO

Background: Biologic disease-modifying drugs have revolutionised the treatment of a number of chronic inflammatory diseases (CID). However, up to 60% of the patients do not have a sufficient response to treatment and there is a need for optimization of treatment strategies. Objective: To investigate if the treatment outcome of biological therapy is associated with the habitual dietary intake of fibre and red/processed meat in patients with a CID. Methods: In this multicentre prospective cohort study, we consecutively enrolled 233 adult patients with a diagnosis of Crohn's Disease, Ulcerative Colitis, Rheumatoid Arthritis (RA), Axial Spondyloarthritis, Psoriatic Arthritis and Psoriasis, for whom biologic therapy was planned, over a 3 year period. Patients with completed baseline food frequency questionnaires were stratified into a high fibre/low red and processed meat exposed group (HFLM) and an unexposed group (low fibre/high red and processed meat intake = LFHM). The primary outcome was the proportion of patients with a clinical response to biologic therapy after 14-16 weeks of treatment. Results: Of the 193 patients included in our primary analysis, 114 (59%) had a clinical response to biologic therapy. In the HFLM group (N = 64), 41 (64%) patients responded to treatment compared to 73 (56%) in the LFHM group (N = 129), but the difference was not statistically significant (OR: 1.48, 0.72-3.05). For RA patients however, HFLM diet was associated with a more likely clinical response (82% vs. 35%; OR: 9.84, 1.35-71.56). Conclusion: Habitual HFLM intake did not affect the clinical response to biological treatment across CIDs. HFLM diet in RA patients might be associated with better odds for responding to biological treatment, but this would need confirmation in a randomised trial. Trial registration: (clinicaltrials.gov), identifier [NCT03173144].

3.
Autoimmun Rev ; 19(11): 102672, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32942038

RESUMO

Epidemiological studies have identified vitamin D (25(OH)D) deficiency to be highly prevalent among patients with inflammatory bowel disease (IBD), and low serum levels correlate with a higher disease activity and a more complicated disease course. The link to IBD pathogenesis has been subject of investigations, primarily due to the distinct immunological functions of vitamin D signaling, including anti-inflammatory and anti-fibrotic actions. Vitamin D is a pleiotropic hormone that executes its actions on cells through the vitamin D receptor (VDR). A leaky gut, i.e. an insufficient intestinal epithelial barrier, is thought to be central for the pathogenesis of IBD, and emerging data support the concept that vitamin D/VDR signaling in intestinal epithelial cells (IECs) has an important role in controlling barrier integrity. Here we review the latest evidence on how vitamin D promotes the interplay between IECs, the gut microbiome, and immune cells and thereby regulate the intestinal immune response. On the cellular level, vitamin D signaling regulates tight junctional complexes, apoptosis, and autophagy, leading to increased epithelial barrier integrity, and promotes expression of antimicrobial peptides as part of its immunomodulating functions. Further, intestinal VDR expression is inversely correlated with the severity of inflammation in patients with IBD, which might compromise the positive effects of vitamin D signaling in patients with flaring disease. Efforts to reveal the role of vitamin D in the pathophysiology of IBD will pave the road for the invention of more rational treatment strategies of this debilitating disease in the future.


Assuntos
Doenças Inflamatórias Intestinais , Mucosa Intestinal/imunologia , Vitamina D/fisiologia , Microbioma Gastrointestinal , Humanos , Transdução de Sinais , Junções Íntimas
4.
Biomaterials ; 262: 120248, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32891909

RESUMO

Intestinal organoids have widespread research and biomedical applications, such as disease modeling, drug testing and regenerative medicine. However, the transition towards clinical use has in part been hampered by the dependency on animal tumor-derived basement membrane extracts (BMEs), which are poorly defined and ill-suited for regulatory approval due to their origin and batch-to-batch variability. In order to overcome these limitations, and to enable clinical translation, we tested the use of a fully defined hydrogel matrix, QGel CN99, to establish and expand intestinal organoids directly from human colonic biopsies. We achieved efficient de novo establishment, expansion and organoid maintenance, while also demonstrating sustained genetic stability. Additionally, we were able to preserve stemness and differentiation capacity, with transcriptomic profiles resembling normal colonic epithelium. All data proved comparable to organoids cultured in the BME-benchmark Matrigel. The application of a fully defined hydrogel, completely bypassing the use of BMEs, will drastically improve the reproducibility and scalability of organoid studies, but also advance translational applications in personalized medicine and stem cell-based regenerative therapies.


Assuntos
Organoides , Células-Tronco , Animais , Biópsia , Humanos , Intestinos , Reprodutibilidade dos Testes
5.
Stem Cell Res Ther ; 10(1): 148, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133056

RESUMO

BACKGROUND: Intestinal stem cell transplantation has been shown to promote mucosal healing and to engender fully functional epithelium in experimental colitis. Hence, stem cell therapies may provide an innovative approach to accomplish mucosal healing in patients with debilitating conditions such as inflammatory bowel disease. However, an approach to label and trace transplanted cells, in order to assess engraftment efficiency and to monitor wound healing, is a key hurdle to overcome prior to initiating human studies. Genetic engineering is commonly employed in animal studies, but may be problematic in humans due to potential off-target and long-term adverse effects. METHODS: We investigated the applicability of a panel of fluorescent dyes and nanoparticles to label intestinal organoids for visualization using the clinically approved imaging modality, confocal laser endomicroscopy (CLE). Staining homogeneity, durability, cell viability, differentiation capacity, and organoid forming efficiency were evaluated, together with visualization of labeled organoids in vitro and ex vivo using CLE. RESULTS: 5-Chloromethylfluorescein diacetate (CMFDA) proved to be suitable as it efficiently stained all organoids without transfer to unstained organoids in co-cultures. No noticeable adverse effects on viability, organoid growth, or stem cell differentiation capacity were observed, although single-cell reseeding revealed a dose-dependent reduction in organoid forming efficiency. Labeled organoids were easily identified in vitro using CLE for a duration of at least 3 days and could additionally be detected ex vivo following transplantation into murine experimental colitis. CONCLUSIONS: It is highly feasible to use fluorescent dye-based labeling in combination with CLE to trace intestinal organoids following transplantation to confirm implantation at the intestinal target site.


Assuntos
Células Epiteliais/metabolismo , Fluorescência , Mucosa Intestinal/metabolismo , Microscopia Confocal/métodos , Animais , Humanos , Masculino , Camundongos
6.
Pharmacol Ther ; 192: 100-111, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30048708

RESUMO

An unmet medical need exists for novel targeted therapies for inflammatory bowel disease (IBD) as many patients experience inadequate responses to antibody-based biologics. An oral drug formulation with reduced production costs and redundancy for healthcare staff to administer therapy ideally should result in diminished healthcare expenses and improved patient compliance. A new drug class of small molecules, the Janus kinase (JAK) inhibitors (jakinibs), fulfills these criteria and has recently shown efficacy in IBD. Here we provide an overview of the mode of action of jakinibs and provide a comprehensive overview of existing clinical studies. Convincing clinical data show that a complex cytokine-driven inflammation can efficiently be modulated by therapeutic inhibition of the JAK proteins.


Assuntos
Doenças Inflamatórias Intestinais/tratamento farmacológico , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/antagonistas & inibidores , Fatores de Transcrição STAT/metabolismo , Animais , Ensaios Clínicos como Assunto , Citocinas/metabolismo , Humanos , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/imunologia , Inibidores de Janus Quinases/administração & dosagem , Terapia de Alvo Molecular , Transdução de Sinais
8.
EBioMedicine ; 36: 497-507, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30190207

RESUMO

BACKGROUND: Inhibition of tumor necrosis factor-α (TNF) signaling is beneficial in the management of ulcerative colitis (UC), but up to one-third of patients do not have a clinical response of relevance to TNF inhibitors during induction therapy (i.e. primary non-responders [PNRs]). Through production of prostaglandins (PGs) and thromboxanes, cyclooxygenase-2 (COX-2) affects inflammation and epithelial regeneration and may in this way be implicated in treatment resistance to TNF inhibitors. METHODS: In this study, COX-2 expression was analyzed in human intestinal biopsies and patient-derived monocytes, and the downstream consequences of COX-2 activity was evaluated by assessing the influence of the down-stream effector, PGE2, on intestinal epithelial stem cell self-renewal and differentiation using primary human intestinal organoids ("mini-guts"). FINDINGS: We found that TNF stimulation induced COX-2 expression in monocytes isolated from responders (Rs), whereas COX-2 expression was constitutively high and non-inducible in monocytes from PNRs. Additionally, PGE2 in combination with proliferative signals transformed human intestinal epithelial cells to a proinflammatory state akin to flaring UC, whereas PGE2 in combination with differentiation signals supported robust mucin induction. INTERPRETATION: Our work indicates that COX-2-PGE2 signaling could be a novel target for the management of PNRs to TNF inhibitors. We additionally demonstrate that COX-2-PGE2 signaling has dual functions during tissue repair and normal lineage differentiation, explaining in part the lack of response to TNF inhibitors among PNRs. FUND: This work was funded by grants from the Novo Nordisk Foundation, the Lundbeck Foundation, the Vanderbilt Digestive Disease Research Center, NIH Grants, Aase and Ejnar Danielsen's Foundation and the A.P. Møller Foundation.


Assuntos
Colite Ulcerativa/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Mucosa Intestinal/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Cicatrização , Biomarcadores , Biópsia , Autorrenovação Celular/genética , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/etiologia , Ciclo-Oxigenase 2/genética , Células Epiteliais/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Mucosa Intestinal/patologia , Monócitos/imunologia , Monócitos/metabolismo , Regeneração , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA