RESUMO
Interferons (IFNs) induce an antimicrobial state, protecting tissues from infection. Many viruses inhibit IFN signaling, but whether bacterial pathogens evade IFN responses remains unclear. Here, we demonstrate that the Shigella OspC family of type-III-secreted effectors blocks IFN signaling independently of its cell death inhibitory activity. Rather, IFN inhibition was mediated by the binding of OspC1 and OspC3 to the Ca2+ sensor calmodulin (CaM), blocking CaM kinase II and downstream JAK/STAT signaling. The growth of Shigella lacking OspC1 and OspC3 was attenuated in epithelial cells and in a murine model of infection. This phenotype was rescued in both models by the depletion of IFN receptors. OspC homologs conserved in additional pathogens not only bound CaM but also inhibited IFN, suggesting a widespread virulence strategy. These findings reveal a conserved but previously undescribed molecular mechanism of IFN inhibition and demonstrate the critical role of Ca2+ and IFN targeting in bacterial pathogenesis.
Assuntos
Interferons , Fatores de Virulência , Animais , Antivirais , Sinalização do Cálcio , Células Epiteliais/metabolismo , Interferons/metabolismo , Camundongos , Fatores de Virulência/metabolismoRESUMO
FlhF and FlhG control the location and number of flagella, respectively, in many polar-flagellated bacteria. The roles of FlhF and FlhG are not well characterized in bacteria that have multiple polar flagella, such as Helicobacter pylori. Deleting flhG in H. pylori shifted the flagellation pattern where most cells had approximately four flagella to a wider and more even distribution in flagellar number. As reported in other bacteria, deleting flhF in H. pylori resulted in reduced motility, hypoflagellation, and the improper localization of flagella to nonpolar sites. Motile variants of H. pylori ∆flhF mutants that had a higher proportion of flagella localizing correctly to the cell pole were isolated, but we were unable to identify the genetic determinants responsible for the increased localization of flagella to the cell pole. One motile variant though produced more flagella than the ΔflhF parental strain, which apparently resulted from a missense mutation in fliF (encodes the MS ring protein), which changed Asn-255 to aspartate. Recombinant FliFN255D, but not recombinant wild-type FliF, formed ordered ring-like assemblies in vitro that were ~50 nm wide and displayed the MS ring architecture. We infer from these findings that the FliFN225D variant forms the MS ring more effectively in vivo in the absence of FlhF than wild-type FliF. IMPORTANCE Helicobacter pylori colonizes the human stomach where it can cause a variety of diseases, including peptic ulcer disease and gastric cancer. H. pylori uses flagella for motility, which is required for host colonization. FlhG and FlhF control the flagellation patterns in many bacteria. We found that in H. pylori, FlhG ensures that cells have approximately equal number of flagella and FlhF is needed for flagellum assembly and localization. FlhF is proposed to facilitate the assembly of FliF into the MS ring, which is one of the earliest structures formed in flagellum assembly. We identified a FliF variant that assembles the MS ring in the absence of FlhF, which supports the proposed role of FlhF in facilitating MS ring assembly.
Assuntos
Helicobacter pylori , Proteínas Monoméricas de Ligação ao GTP , Humanos , Proteínas de Bactérias/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Flagelos/genética , Flagelos/metabolismoRESUMO
The biofilm matrix is composed of exopolysaccharides, eDNA, membrane vesicles, and proteins. While proteomic analyses have identified numerous matrix proteins, their functions in the biofilm remain understudied compared to the other biofilm components. In the Pseudomonas aeruginosa biofilm, several studies have identified OprF as an abundant matrix protein and, more specifically, as a component of biofilm membrane vesicles. OprF is a major outer membrane porin of P. aeruginosa cells. However, current data describing the effects of OprF in the P. aeruginosa biofilm are limited. Here, we identify a nutrient-dependent effect of OprF in static biofilms, whereby ΔoprF cells form significantly less biofilm than wild type when grown in media containing glucose or low sodium chloride concentrations. Interestingly, this biofilm defect occurs during late static biofilm formation and is not dependent on the production of PQS, which is responsible for outer membrane vesicle production. Furthermore, while biofilms lacking OprF contain approximately 60% less total biomass than those of wild type, the number of cells in these two biofilms is equivalent. We demonstrate that P. aeruginosa ΔoprF biofilms with reduced biofilm biomass contain less eDNA than wild-type biofilms. These results suggest that the nutrient-dependent effect of OprF is involved in the maintenance of P. aeruginosa biofilms by retaining eDNA in the matrix. IMPORTANCE Many pathogens form biofilms, which are bacterial communities encased in an extracellular matrix that protects them against antibacterial treatments. The roles of several matrix components of the opportunistic pathogen Pseudomonas aeruginosa have been characterized. However, the effects of P. aeruginosa matrix proteins remain understudied and are untapped potential targets for antibiofilm treatments. Here, we describe a conditional effect of the abundant matrix protein OprF on late-stage P. aeruginosa biofilms. A ΔoprF strain formed significantly less biofilm in low sodium chloride or with glucose. Interestingly, the defective ΔoprF biofilms did not exhibit fewer resident cells but contained significantly less extracellular DNA (eDNA) than wild type. These results suggest that OprF is involved in matrix eDNA retention in biofilms.
Assuntos
Matriz Extracelular de Substâncias Poliméricas , Pseudomonas aeruginosa , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Pseudomonas aeruginosa/genética , Proteômica , Cloreto de Sódio/metabolismo , Biofilmes , DNA/metabolismo , Nutrientes , Glucose/metabolismo , Proteínas de Bactérias/genéticaRESUMO
The bacterial flagellum is a large macromolecular assembly that acts as propeller, providing motility through the rotation of a long extracellular filament. It is composed of over 20 different proteins, many of them highly oligomeric. Accordingly, it has attracted a huge amount of interest amongst researchers and the wider public alike. Nonetheless, most of its molecular details had long remained elusive.This however has changed recently, with the emergence of cryo-EM to determine the structure of protein assemblies at near-atomic resolution. Within a few years, the atomic details of most of the flagellar components have been elucidated, revealing not only its overall architecture but also the molecular details of its rotation mechanism. However, many questions remained unaddressed, notably on the complexity of the assembly of such an intricate machinery.In this chapter, we review the current state of our understanding of the bacterial flagellum structure, focusing on the recent development from cryo-EM. We also highlight the various elements that still remain to be fully characterized. Finally, we summarize the existing model for flagellum assembly and discuss some of the outstanding questions that are still pending in our understanding of the diversity of assembly pathways.
Assuntos
Proteínas de Bactérias , Flagelos , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Flagelos/química , Substâncias MacromolecularesRESUMO
The emergence and prevalence of drug resistance demands streamlined strategies to identify drug resistant variants in a fast, systematic and cost-effective way. Methods commonly used to understand and predict drug resistance rely on limited clinical studies from patients who are refractory to drugs or on laborious evolution experiments with poor coverage of the gene variants. Here, we report an integrative functional variomics methodology combining deep sequencing and a Bayesian statistical model to provide a comprehensive list of drug resistance alleles from complex variant populations. Dihydrofolate reductase, the target of methotrexate chemotherapy drug, was used as a model to identify functional mutant alleles correlated with methotrexate resistance. This systematic approach identified previously reported resistance mutations, as well as novel point mutations that were validated in vivo. Use of this systematic strategy as a routine diagnostics tool widens the scope of successful drug research and development.
Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Tetra-Hidrofolato Desidrogenase/metabolismo , Alelos , Teorema de Bayes , Antagonistas do Ácido Fólico/uso terapêutico , Humanos , Metotrexato/uso terapêutico , Mutação , Neoplasias/genética , Tetra-Hidrofolato Desidrogenase/genéticaRESUMO
The majority of bacterial gene regulators bind as symmetric dimers to palindromic DNA operators of 12-20 base pairs (bp). Multimeric forms of proteins, including tetramers, are able to recognize longer operator sequences in a cooperative manner, although how this is achieved is not well understood due to the lack of complete structural information. Models, instead of structures, of complete tetrameric assembly on DNA exist in literature. Here we present the crystal structures of the multidrug-binding protein TtgV, a gene repressor that controls efflux pumps, alone and in complex with a 42-bp DNA operator containing two TtgV recognition sites at 2.9 Å and 3.4 Å resolution. These structures represent the first full-length functional tetrameric protein in complex with its intact DNA operator containing two continuous recognition sites. TtgV binds to its DNA operator as a highly asymmetric tetramer and induces considerable distortions in the DNA, resulting in a 60° bend. Upon binding to its operator, TtgV undergoes large conformational changes at the monomeric, dimeric, and tetrameric levels. The structures here reveal a general model for cooperative DNA binding of tetrameric gene regulators and provide a structural basis for a large body of biochemical data and a reinterpretation of previous models for tetrameric gene regulators derived from partial structural data.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Pseudomonas putida/química , Pseudomonas putida/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Escherichia coli/genética , Genes Reguladores/fisiologia , Regiões Operadoras Genéticas/fisiologia , Ligação Proteica , Estrutura Quaternária de ProteínaRESUMO
The type 3 secretion system (T3SS) and the bacterial flagellum are related pathogenicity-associated appendages found at the surface of many disease-causing bacteria. These appendages consist of long tubular structures that protrude away from the bacterial surface to interact with the host cell and/or promote motility. A proposed "ruler" protein tightly regulates the length of both the T3SS and the flagellum, but the molecular basis for this length control has remained poorly characterized and controversial. Using the Pseudomonas aeruginosa T3SS as a model system, we report the first structure of a T3SS ruler protein, revealing a "ball-and-chain" architecture, with a globular C-terminal domain (the ball) preceded by a long intrinsically disordered N-terminal polypeptide chain. The dimensions and stability of the globular domain do not support its potential passage through the inner lumen of the T3SS needle. We further demonstrate that a conserved motif at the N terminus of the ruler protein interacts with the T3SS autoprotease in the cytosolic side. Collectively, these data suggest a potential mechanism for needle length sensing by ruler proteins, whereby upon T3SS needle assembly, the ruler protein's N-terminal end is anchored on the cytosolic side, with the globular domain located on the extracellular end of the growing needle. Sequence analysis of T3SS and flagellar ruler proteins shows that this mechanism is probably conserved across systems.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Flagelos/química , Flagelos/genética , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Alinhamento de Sequência , Sistemas de Secreção Tipo III/química , Sistemas de Secreção Tipo III/genéticaRESUMO
UNLABELLED: Human myxovirus resistance 2 (MX2/MXB) is an interferon-stimulated gene (ISG) and was recently identified as a late postentry suppressor of human immunodeficiency virus type 1 (HIV-1) infection, inhibiting the nuclear accumulation of viral cDNAs. Although the HIV-1 capsid (CA) protein is believed to be the viral determinant of MX2-mediated inhibition, the precise mechanism of antiviral action remains unclear. The MX family of dynamin-like GTPases also includes MX1/MXA, a well-studied inhibitor of a range of RNA and DNA viruses, including influenza A virus (FLUAV) and hepatitis B virus but not retroviruses. MX1 and MX2 are closely related and share similar domain architectures and structures. However, MX2 possesses an extended N terminus that is essential for antiviral function and confers anti-HIV-1 activity on MX1 [MX1(NMX2)]. Higher-order oligomerization is required for the antiviral activity of MX1 against FLUAV, with current models proposing that MX1 forms ring structures that constrict around viral nucleoprotein complexes. Here, we performed structure-function studies to investigate the requirements for oligomerization of both MX2 and chimeric MX1(NMX2) for the inhibition of HIV-1 infection. The oligomerization state of mutated proteins with amino acid substitutions at multiple putative oligomerization interfaces was assessed using a combination of covalent cross-linking and coimmunoprecipitation. We show that while monomeric MX2 and MX1(NMX2) mutants are not antiviral, higher-order oligomerization does not appear to be required for full antiviral activity of either protein. We propose that lower-order oligomerization of MX2 is sufficient for the effective inhibition of HIV-1. IMPORTANCE: Interferon plays an important role in the control of virus replication during acute infection in vivo. Recently, cultured cell experiments identified human MX2 as a key effector in the interferon-mediated postentry block to HIV-1 infection. MX2 is a member of a family of large dynamin-like GTPases that includes MX1/MXA, a closely related interferon-inducible inhibitor of several viruses, including FLUAV, but not HIV-1. MX GTPases form higher-order oligomeric structures, and the oligomerization of MX1 is required for inhibitory activity against many of its viral targets. Through structure-function studies, we report that monomeric mutants of MX2 do not inhibit HIV-1. However, in contrast to MX1, oligomerization beyond dimer assembly does not seem to be required for the antiviral activity of MX2, implying that fundamental differences exist between the antiviral mechanisms employed by these closely related proteins.
Assuntos
HIV-1/imunologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Proteínas de Resistência a Myxovirus/metabolismo , Multimerização Proteica , Replicação Viral , Substituição de Aminoácidos , Linhagem Celular , Análise Mutacional de DNA , Humanos , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas de Resistência a Myxovirus/genética , Conformação ProteicaRESUMO
The T3SS injectisome is a syringe-shaped macromolecular assembly found in pathogenic Gram-negative bacteria that allows for the direct delivery of virulence effectors into host cells. It is composed of a "basal body", a lock-nut structure spanning both bacterial membranes, and a "needle" that protrudes away from the bacterial surface. A hollow channel spans throughout the apparatus, permitting the translocation of effector proteins from the bacterial cytosol to the host plasma membrane. The basal body is composed largely of three membrane-embedded proteins that form oligomerized concentric rings. Here, we report the crystal structures of three domains of the prototypical Salmonella SPI-1 basal body, and use a new approach incorporating symmetric flexible backbone docking and EM data to produce a model for their oligomeric assembly. The obtained models, validated by biochemical and in vivo assays, reveal the molecular details of the interactions driving basal body assembly, and notably demonstrate a conserved oligomerization mechanism.
Assuntos
Proteínas de Bactérias/química , Sistemas de Secreção Bacterianos , Membrana Celular/metabolismo , Proteínas de Membrana/química , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Proteínas de Membrana/metabolismo , Modelos Moleculares , Estrutura Terciária de ProteínaRESUMO
The Maintenance of Lipid Asymmetry (Mla) pathway is a multicomponent system found in all gram-negative bacteria that contributes to virulence, vesicle blebbing and preservation of the outer membrane barrier function. It acts by removing ectopic lipids from the outer leaflet of the outer membrane and returning them to the inner membrane through three proteinaceous assemblies: the MlaA-OmpC complex, situated within the outer membrane; the periplasmic phospholipid shuttle protein, MlaC; and the inner membrane ABC transporter complex, MlaFEDB, proposed to be the founding member of a structurally distinct ABC superfamily. While the function of each component is well established, how phospholipids are exchanged between components remains unknown. This stands as a major roadblock in our understanding of the function of the pathway, and in particular, the role of ATPase activity of MlaFEDB is not clear. Here, we report the structure of E. coli MlaC in complex with the MlaD hexamer in two distinct stoichiometries. Utilising in vivo complementation assays, an in vitro fluorescence-based transport assay, and molecular dynamics simulations, we confirm key residues, identifying the MlaD ß6-ß7 loop as essential for MlaCD function. We also provide evidence that phospholipids pass between the C-terminal helices of the MlaD hexamer to reach the central pore, providing insight into the trajectory of GPL transfer between MlaC and MlaD.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Escherichia coli , Escherichia coli , Periplasma , Fosfolipídeos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transporte Biológico , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Membrana , Modelos Moleculares , Periplasma/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Fosfolipídeos/metabolismoRESUMO
The human immunodeficiency virus type-1 (HIV-1) Rev protein regulates the nuclear export of intron-containing viral RNAs by recruiting the CRM1 nuclear export receptor. Here, we employed a combination of functional and phylogenetic analyses to identify and characterize a species-specific determinant within human CRM1 (hCRM1) that largely overcomes established defects in murine cells to the post-transcriptional stages of the HIV-1 life cycle. hCRM1 expression in murine cells promotes the cytoplasmic accumulation of intron-containing viral RNAs, resulting in a substantial stimulation of the net production of infectious HIV-1 particles. These stimulatory effects require a novel surface-exposed element within HEAT repeats 9A and 10A, discrete from the binding cleft previously shown to engage Rev's leucine-rich nuclear export signal. Moreover, we show that this element is a unique feature of higher primate CRM1 proteins, and discuss how this sequence has evolved from a non-functional, ancestral sequence.
Assuntos
HIV-1/fisiologia , Carioferinas/genética , Receptores Citoplasmáticos e Nucleares/genética , Replicação Viral/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , HIV-1/genética , Humanos , Carioferinas/química , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Células NIH 3T3 , Primatas/genética , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Sequências Repetitivas de Ácido Nucleico/genética , Alinhamento de Sequência , Especificidade da Espécie , Proteína Exportina 1RESUMO
Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC) are food-borne pathogens that cause severe diarrhoeal disease in humans. Citrobacter rodentium is a related mouse pathogen that serves as a small animal model for EPEC and EHEC infections. EPEC, EHEC and C. rodentium translocate bacterial virulence proteins directly into host cells via a type III secretion system (T3SS). Non-LEE-encoded effector A (NleA) is a T3SS effector that is common to EPEC, EHEC and C. rodentium and is required for bacterial virulence. NleA localizes to the host cell secretory pathway and inhibits vesicle trafficking by interacting with the Sec24 subunit of mammalian coatamer protein II complex (COPII). Mammalian cells express four paralogues of Sec24 (Sec24A-D), which mediate selection of cargo proteins for transport and possess distinct, but overlapping cargo specificities. Here, we show that NleA binds Sec24A-D with two distinct mechanisms. An NleA protein variant with greatly diminished interaction with all Sec24 paralogues does not properly localize, does not inhibit COPII-mediated vesicle budding, and does not confer virulence in the mouse infection model. Together, this work provides strong evidence that the interaction and inhibition of COPII by NleA is an important aspect of EPEC- and EHEC-mediated disease.
Assuntos
Proteínas de Bactérias/metabolismo , Citrobacter rodentium/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/microbiologia , Citrobacter rodentium/metabolismo , Feminino , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos C3H , Domínios PDZ , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Transporte Proteico , Via Secretória , Deleção de Sequência , Proteínas de Transporte Vesicular/química , Fatores de Virulência/química , Fatores de Virulência/genéticaRESUMO
ARTICLES DISCUSSED: de Martin Garrido, N., Ramlaul, K., Aylett, C. H. S. Preparation of sample support films in transmission electron microscopy using a support floatation block. Journal of Visualized Experiments. (170), doi:10.3791/62321 (2021). Klebl, D. P., Sobott, F., White, H. D., Muench, S. P. Fast grid preparation for time-resolved cryo-electron microscopy. Journal of Visualized Experiments. (177), doi:10.3791/62199 (2021). Budell, W. C., Allegri, L., Dandey, V., Potter, C. S., Carragher, B. Cryo-Electron microscopic grid preparation for time-resolved studies using a novel robotic system, Spotiton. Journal of Visualized Experiments. (168), doi:10.3791/62271 (2021). Nguyen, H. P. M., McGuire, K. L., Cook, B. D., Herzik, M. A., Jr. Manual blot-and-plunge freezing of biological specimens for single-particle cryogenic electron microscopy. Journal of Visualized Experiments. (180), doi:10.3791/62765 (2022). Martynowycz, M. W., Gonen, T. Microcrystal electron diffraction of small molecules. Journal of Visualized Experiments. (169), doi:10.3791/62313 (2021). Bisson, C., Hecksel, C. W., Gilchrist, J. B., Fleck, R. A. Preparing lamellae from vitreous biological samples using a dual-beam scanning electron microscope for cryo-electron tomography. Journal of Visualized Experiments. (174), doi:10.3791/62350 (2021). Wypych, D., Kierecki, D., Golebiowski, F. M., Rohou, A. gP2S, an information management system for CryoEM experiments. Journal of Visualized Experiments. (172), doi:10.3791/62377 (2021).
Assuntos
Sistemas Computacionais , Tomografia com Microscopia Eletrônica , Microscopia Crioeletrônica , Elétrons , Microscopia Eletrônica de TransmissãoRESUMO
Carboxysomes are proteinaceous bacterial microcompartments that sequester the key enzymes for carbon fixation in cyanobacteria and some proteobacteria. They consist of a virus-like icosahedral shell, encapsulating several enzymes, including ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), responsible for the first step of the Calvin-Benson-Bassham cycle. Despite their significance in carbon fixation and great bioengineering potentials, the structural understanding of native carboxysomes is currently limited to low-resolution studies. Here, we report the characterization of a native α-carboxysome from a marine cyanobacterium by single-particle cryoelectron microscopy (cryo-EM). We have determined the structure of its RuBisCO enzyme, and obtained low-resolution maps of its icosahedral shell, and of its concentric interior organization. Using integrative modeling approaches, we have proposed a complete atomic model of an intact carboxysome, providing insight into its organization and assembly. This is critical for a better understanding of the carbon fixation mechanism and toward repurposing carboxysomes in synthetic biology for biotechnological applications.
Assuntos
Cianobactérias , Ribulose-Bifosfato Carboxilase , Microscopia Crioeletrônica , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Organelas/metabolismo , Fotossíntese , Proteínas de Bactérias/metabolismoRESUMO
Treatment of Clostridioides difficile infection (CDI) is expensive and complex, with a high proportion of patients suffering infection relapse (20-35%), and some having multiple relapses. A healthy, unperturbed gut microbiome provides colonisation resistance against CDI through competition for nutrients and space. However, antibiotic consumption can disturb the gut microbiota (dysbiosis) resulting in the loss of colonisation resistance allowing C. difficile to colonise and establish infection. A unique feature of C. difficile is the production of high concentrations of the antimicrobial compound para-cresol, which provides the bacterium with a competitive advantage over other bacteria found in the gut. p-cresol is produced by the conversion of para-Hydroxyphenylacetic acid (p-HPA) by the HpdBCA enzyme complex. In this study, we have identified several promising inhibitors of HpdBCA decarboxylase, which reduce p-cresol production and render C. difficile less able to compete with a gut dwelling Escherichia coli strain. We demonstrate that the lead compound, 4-Hydroxyphenylacetonitrile, reduced p-cresol production by 99.0 ± 0.4%, whereas 4-Hydroxyphenylacetamide, a previously identified inhibitor of HpdBCA decarboxylase, only reduced p-cresol production by 54.9 ± 13.5%. To interpret efficacy of these first-generation inhibitors, we undertook molecular docking studies that predict the binding mode for these compounds. Notably, the predicted binding energy correlated well with the experimentally determined level of inhibition, providing a molecular basis for the differences in efficacy between the compounds. This study has identified promising p-cresol production inhibitors whose development could lead to beneficial therapeutics that help to restore colonisation resistance and therefore reduce the likelihood of CDI relapse.
Assuntos
Carboxiliases , Clostridioides difficile , Microbioma Gastrointestinal , Humanos , Simulação de Acoplamento Molecular , Clostridioides , Escherichia coliRESUMO
The HIV-1 viral infectivity factor (Vif) protein recruits an E3 ubiquitin ligase complex, comprising the cellular proteins elongin B and C (EloBC), cullin 5 (Cul5) and RING-box 2 (Rbx2), to the anti-viral proteins APOBEC3G (A3G) and APOBEC3F (A3F) and induces their polyubiquitination and proteasomal degradation. In this study, we used purified proteins and direct in vitro binding assays, isothermal titration calorimetry and NMR spectroscopy to describe the molecular mechanism for assembly of the Vif-EloBC ternary complex. We demonstrate that Vif binds to EloBC in two locations, and that both interactions induce structural changes in the SOCS box of Vif as well as EloBC. In particular, in addition to the previously established binding of Vif's BC box to EloC, we report a novel interaction between the conserved Pro-Pro-Leu-Pro motif of Vif and the C-terminal domain of EloB. Using cell-based assays, we further show that this interaction is necessary for the formation of a functional ligase complex, thus establishing a role of this motif. We conclude that HIV-1 Vif engages EloBC via an induced-folding mechanism that does not require additional co-factors, and speculate that these features distinguish Vif from other EloBC specificity factors such as cellular SOCS proteins, and may enhance the prospects of obtaining therapeutic inhibitors of Vif function.
Assuntos
Proteínas Culina/metabolismo , HIV-1/metabolismo , Dobramento de Proteína , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Proteínas Culina/química , Elonguina , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Humanos , Imunoprecipitação , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Proteínas Supressoras da Sinalização de Citocina/química , Fatores de Transcrição/química , Ubiquitinação , Produtos do Gene vif do Vírus da Imunodeficiência Humana/químicaRESUMO
Double-membrane-spanning protein complexes, such as the T3SS, had long presented an intractable challenge for structural biology. As a consequence, until a few years ago, our molecular understanding of this fascinating complex was limited to composite models, consisting of structures of isolated domains, positioned within the overall complex. Most of the membrane-embedded components remained completely uncharacterized. In recent years, the emergence of cryo-electron microscopy (cryo-EM) as a method for determining protein structures to high resolution, has be transformative to our capacity to understand the architecture of this complex, and its mechanism of substrate transport. In this review, we summarize the recent structures of the various T3SS components, determined by cryo-EM, and highlight the regions of the complex that remain to be characterized. We also discuss the recent structural insights into the mechanism of effector transport through the T3SS. Finally, we highlight some of the challenges that remain to be tackled.
Assuntos
Sistemas de Secreção Tipo III , Microscopia Crioeletrônica/métodos , Sistemas de Secreção Tipo III/químicaRESUMO
The serine-rich repeat family of fimbriae play important roles in the pathogenesis of streptococci and staphylococci. Despite recent attention, their finer structural details and precise adhesion mechanisms have yet to be determined. Fap1 (Fimbriae-associated protein 1) is the major structural subunit of serine-rich repeat fimbriae from Streptococcus parasanguinis and plays an essential role in fimbrial biogenesis, adhesion, and the early stages of dental plaque formation. Combining multidisciplinary, high resolution structural studies with biological assays, we provide new structural insight into adhesion by Fap1. We propose a model in which the serine-rich repeats of Fap1 subunits form an extended structure that projects the N-terminal globular domains away from the bacterial surface for adhesion to the salivary pellicle. We also uncover a novel pH-dependent conformational change that modulates adhesion and likely plays a role in survival in acidic environments.