RESUMO
BACKGROUND: Different human responses to the same vaccine were frequently observed. For example, independent studies identified overlapping but different transcriptomic gene expression profiles in Yellow Fever vaccine 17D (YF-17D) immunized human subjects. Different experimental and analysis conditions were likely contributed to the observed differences. To investigate this issue, we developed a Vaccine Investigation Ontology (VIO), and applied VIO to classify the different variables and relations among these variables systematically. We then evaluated whether the ontological VIO modeling and VIO-based statistical analysis would contribute to the enhanced vaccine investigation studies and a better understanding of vaccine response mechanisms. RESULTS: Our VIO modeling identified many variables related to data processing and analysis such as normalization method, cut-off criteria, software settings including software version. The datasets from two previous studies on human responses to YF-17D vaccine, reported by Gaucher et al. (2008) and Querec et al. (2009), were re-analyzed. We first applied the same LIMMA statistical method to re-analyze the Gaucher data set and identified a big difference in terms of significantly differentiated gene lists compared to the original study. The different results were likely due to the LIMMA version and software package differences. Our second study re-analyzed both Gaucher and Querec data sets but with the same data processing and analysis pipeline. Significant differences in differential gene lists were also identified. In both studies, we found that Gene Ontology (GO) enrichment results had more overlapping than the gene lists and enriched pathway lists. The visualization of the identified GO hierarchical structures among the enriched GO terms and their associated ancestor terms using GOfox allowed us to find more associations among enriched but often different GO terms, demonstrating the usage of GO hierarchical relations enhance data analysis. CONCLUSIONS: The ontology-based analysis framework supports standardized representation, integration, and analysis of heterogeneous data of host responses to vaccines. Our study also showed that differences in specific variables might explain different results drawn from similar studies.
Assuntos
Vacinas , Ontologias Biológicas , Humanos , SoftwareRESUMO
Cancer vaccines have been increasingly studied and developed to prevent or treat various types of cancers. To systematically survey and analyze different reported cancer vaccines, we developed CanVaxKB (https://violinet.org/canvaxkb), the first web-based cancer vaccine knowledgebase that compiles over 670 therapeutic or preventive cancer vaccines that have been experimentally verified to be effective at various stages. Vaccine construction and host response data are also included. These cancer vaccines are developed against various cancer types such as melanoma, hematological cancer, and prostate cancer. CanVaxKB has stored 263 genes or proteins that serve as cancer vaccine antigen genes, which we have collectively termed 'canvaxgens'. Top three mostly used canvaxgens are PMEL, MLANA and CTAG1B, often targeting multiple cancer types. A total of 193 canvaxgens are also reported in cancer-related ONGene, Network of Cancer Genes and/or Sanger Cancer Gene Consensus databases. Enriched functional annotations and clusters of canvaxgens were identified and analyzed. User-friendly web interfaces are searchable for querying and comparing cancer vaccines. CanVaxKB cancer vaccines are also semantically represented by the community-based Vaccine Ontology to support data exchange. Overall, CanVaxKB is a timely and vital cancer vaccine source that facilitates efficient collection and analysis, further helping researchers and physicians to better understand cancer mechanisms.
RESUMO
Vaccines stimulate various immune factors critical to protective immune responses. However, a comprehensive picture of vaccine-induced immune factors and pathways have not been systematically collected and analyzed. To address this issue, we developed VaximmutorDB, a web-based database system of vaccine immune factors (abbreviated as "vaximmutors") manually curated from peer-reviewed articles. VaximmutorDB currently stores 1,740 vaccine immune factors from 13 host species (e.g., human, mouse, and pig). These vaximmutors were induced by 154 vaccines for 46 pathogens. Top 10 vaximmutors include three antibodies (IgG, IgG2a and IgG1), Th1 immune factors (IFN-γ and IL-2), Th2 immune factors (IL-4 and IL-6), TNF-α, CASP-1, and TLR8. Many enriched host processes (e.g., stimulatory C-type lectin receptor signaling pathway, SRP-dependent cotranslational protein targeting to membrane) and cellular components (e.g., extracellular exosome, nucleoplasm) by all the vaximmutors were identified. Using influenza as a model, live attenuated and killed inactivated influenza vaccines stimulate many shared pathways such as signaling of many interleukins (including IL-1, IL-4, IL-6, IL-13, IL-20, and IL-27), interferon signaling, MARK1 activation, and neutrophil degranulation. However, they also present their unique response patterns. While live attenuated influenza vaccine FluMist induced significant signal transduction responses, killed inactivated influenza vaccine Fluarix induced significant metabolism of protein responses. Two different Yellow Fever vaccine (YF-Vax) studies resulted in overlapping gene lists; however, they shared more portions of pathways than gene lists. Interestingly, live attenuated YF-Vax simulates significant metabolism of protein responses, which was similar to the pattern induced by killed inactivated Fluarix. A user-friendly web interface was generated to access, browse and search the VaximmutorDB database information. As the first web-based database of vaccine immune factors, VaximmutorDB provides systematical collection, standardization, storage, and analysis of experimentally verified vaccine immune factors, supporting better understanding of protective vaccine immunity.