Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 20(5): e1011290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805544

RESUMO

Li-Fraumeni syndrome is caused by inherited TP53 tumor suppressor gene mutations. MicroRNA miR-34a is a p53 target and modifier gene. Interestingly, miR-34 triple-null mice exhibit normal p53 responses and no overt cancer development, but the lack of miR-34 promotes tumorigenesis in cancer-susceptible backgrounds. miR-34 genes are highly conserved and syntenic between zebrafish and humans. Zebrafish miR-34a and miR-34b/c have similar expression timing in development, but miR-34a is more abundant. DNA damage by camptothecin led to p53-dependent induction of miR-34 genes, while miR-34a mutants were adult-viable and had normal DNA damage-induced apoptosis. Nevertheless, miR-34a-/- compound mutants with a gain-of-function tp53R217H/ R217H or tp53-/- mutants were more cancer-prone than tp53 mutants alone, confirming the tumor-suppressive function of miR-34a. Through transcriptomic comparisons at 28 hours post-fertilization (hpf), we characterized DNA damage-induced transcription, and at 8, 28 and 72 hpf we determined potential miR-34a-regulated genes. At 72 hpf, loss of miR-34a enhanced erythrocyte levels and up-regulated myb-positive hematopoietic stem cells. Overexpression of miR-34a suppressed its reporter mRNA, but not p53 target induction, and sensitized injected embryos to camptothecin but not to γ-irradiation.


Assuntos
Dano ao DNA , Hematopoese , MicroRNAs , Proteína Supressora de Tumor p53 , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Humanos , Camundongos , Apoptose/genética , Camptotecina/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Supressores de Tumor , Hematopoese/genética , Síndrome de Li-Fraumeni/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Genet Med ; 26(6): 101104, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38411040

RESUMO

PURPOSE: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system. METHODS: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome. Studies in patient-derived skin fibroblasts and zebrafish models were performed to investigate the biochemical and cellular consequences. RESULTS: Metabolic analysis showed elevated uracil and thymine levels in body fluids but no pathogenic variants in DPYD, encoding dihydropyrimidine dehydrogenase. Genome sequencing identified compound heterozygosity in 2 patients for missense variants in CIAO1, encoding cytosolic iron-sulfur assembly component 1, and homozygosity for an in-frame 3-nucleotide deletion in MMS19, encoding the MMS19 homolog, cytosolic iron-sulfur assembly component, in the third patient. Profound alterations in the proteome, metabolome, and lipidome were observed in patient-derived fibroblasts. We confirmed the detrimental effect of deficiencies in CIAO1 and MMS19 in zebrafish models. CONCLUSION: A general failure of cytosolic and nuclear iron-sulfur protein maturation caused pleiotropic effects. The critical function of the cytosolic iron-sulfur protein assembly machinery for antiviral host defense may well explain the recurrent severe infections occurring in our patients.


Assuntos
Proteínas Ferro-Enxofre , Peixe-Zebra , Animais , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Masculino , Feminino , Fenótipo , Fibroblastos/metabolismo , Fibroblastos/patologia , Citosol/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Microcefalia/genética , Microcefalia/patologia , Lactente , Metalochaperonas
3.
Leukemia ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138265

RESUMO

Mutations in the DNAJC21 gene were recently described in Shwachman-Diamond syndrome (SDS), a bone marrow failure syndrome with high predisposition for myeloid malignancies. To study the underlying biology in hematopoiesis regulation and disease, we generated the first in vivo model of Dnajc21 deficiency using the zebrafish. Zebrafish dnajc21 mutants phenocopy key SDS patient phenotypes such as cytopenia, reduced growth, and defective protein synthesis. We show that cytopenia results from impaired hematopoietic differentiation, accumulation of DNA damage, and reduced cell proliferation. The introduction of a biallelic tp53 mutation in the dnajc21 mutants leads to the development of myelodysplastic neoplasia-like features defined by abnormal erythroid morphology and expansion of hematopoietic progenitors. Using transcriptomic and metabolomic analyses, we uncover a novel role for Dnajc21 in nucleotide metabolism. Exogenous nucleoside supplementation restores neutrophil counts, revealing an association between nucleotide imbalance and neutrophil differentiation, suggesting a novel mechanism in dnajc21-mutant SDS biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA