Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047686

RESUMO

Successful anterior cruciate ligament (ACL) reconstructions strive for a firm bone-ligament integration. With the aim to establish an enthesis-like construct, embroidered functionalized scaffolds were colonized with spheroids of osteogenically differentiated human mesenchymal stem cells (hMSCs) and lapine (l) ACL fibroblasts in this study. These triphasic poly(L-lactide-co-ε-caprolactone) and polylactic acid (P(LA-CL)/PLA) scaffolds with a bone-, a fibrocartilage transition- and a ligament zone were colonized with spheroids directly after assembly (DC) or with 14-day pre-cultured lACL fibroblast and 14-day osteogenically differentiated hMSCs spheroids (=longer pre-cultivation, LC). The scaffolds with co-cultures were cultured for 14 days. Cell vitality, DNA and sulfated glycosaminoglycan (sGAG) contents were determined. The relative gene expressions of collagen types I and X, Mohawk, Tenascin C and runt-related protein (RUNX) 2 were analyzed. Compared to the lACL spheroids, those with hMSCs adhered more rapidly. Vimentin and collagen type I immunoreactivity were mainly detected in the hMSCs colonizing the bone zone. The DNA content was higher in the DC than in LC whereas the sGAG content was higher in LC. The gene expression of ECM components and transcription factors depended on cell type and pre-culturing condition. Zonal colonization of triphasic scaffolds using spheroids is possible, offering a novel approach for enthesis tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual , Humanos , Ligamento Cruzado Anterior , Alicerces Teciduais , Técnicas de Cocultura , Poliésteres/metabolismo , Células-Tronco Mesenquimais/metabolismo , Colágeno Tipo I/metabolismo , Células Cultivadas
2.
Clin Oral Investig ; 19(6): 1279-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25352470

RESUMO

OBJECTIVES: Nitrogen-containing bisphosphonates induce osteonecrosis mostly in the jaw and less frequently in other bones. Because of the crucial role of periosteal perfusion in bone repair, we investigated zoledronate-induced microcirculatory reactions in the mandibular periosteum in comparison with those in the tibia in a clinically relevant model of bisphosphonate-induced medication-related osteonecrosis of the jaw (MRONJ). MATERIALS AND METHODS: Sprague-Dawley rats were treated with zoledronate (ZOL; 80 i.v. µg/kg/week over 8 weeks) or saline vehicle. The first two right mandibular molar teeth were extracted after 3 weeks. Various systemic and local (periosteal) microcirculatory inflammatory parameters were examined by intravital videomicroscopy after 9 weeks. RESULTS: Gingival healing disorders (∼100%) and MRONJ developed in 70% of ZOL-treated cases but not after saline (shown by micro-CT). ZOL induced significantly higher degrees of periosteal leukocyte rolling and adhesion in the mandibular postcapillary venules (at both extraction and intact sites) than at the tibia. Leukocyte NADPH-oxidase activity was reduced; leukocyte CD11b and plasma TNF-alpha levels were unchanged. CONCLUSION: Chronic ZOL treatment causes a distinct microcirculatory inflammatory reaction in the mandibular periosteum but not in the tibia. The local reaction in the absence of augmented systemic leukocyte inflammatory activity suggests that topically different, endothelium-specific changes may play a critical role in the pathogenesis of MRONJ. CLINICAL RELEVANCE: This model permits for the first time to explore the microvascular processes in the mandibular periosteum after chronic ZOL treatment. This approach may contribute to a better understanding of the pathomechanism and the development of strategies to counteract bisphosphonate-induced side effects.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Conservadores da Densidade Óssea/farmacologia , Difosfonatos/farmacologia , Imidazóis/farmacologia , Microcirculação/efeitos dos fármacos , Periósteo/irrigação sanguínea , Animais , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/diagnóstico por imagem , Modelos Animais de Doenças , Mandíbula/irrigação sanguínea , Mandíbula/diagnóstico por imagem , Microscopia de Fluorescência , Ratos , Ratos Sprague-Dawley , Extração Dentária , Microtomografia por Raio-X , Ácido Zoledrônico
3.
Eur J Nutr ; 53(4): 1073-81, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24170065

RESUMO

PURPOSE: The Mediterranean diet rich in fruits, vegetables and olive oil has been related to a lower osteoporosis incidence and accordingly to a reduced fracture risk. These observations might be mediated by the active constituents of extra virgin olive oil, and especially polyphenols. In the context of exploring the features of olive oil active constituents on postmenopausal osteoporosis, an extra virgin olive oil total polyphenolic fraction (TPF) was isolated and its effect on the bone loss attenuation was investigated. METHODS: Female Lewis rats were ovariectomized and fed a diet enriched with a total phenolic extract of extra virgin olive oil in a concentration of 800 mg/kg diet. RESULTS: Oleocanthal, one compound of the polyphenolic fraction, showed a higher relative estrogen receptor binding affinity to the ERα compared to the ERß. While the TPF only slightly induced the uterine wet weight (490.7 ± 53.7 vs. 432.7 ± 23, p = 0.058), TPF regulated estrogen response genes in the uterus (progesterone receptor, antigen identified by monoclonal antibody Ki67, complement C3). Comparing the quantified bone parameters, the oral TPF substitution did not attenuate the ovariectomy-induced bone loss. CONCLUSIONS: The administration of extra virgin olive oil polyphenols regulated uterine estrogen response marker genes in an E2-agonistic manner. The bone loss induced by estrogen ablation was not mitigated by treatment with the polyphenolic extract.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osteoporose Pós-Menopausa/tratamento farmacológico , Extratos Vegetais/farmacologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Útero/efeitos dos fármacos , Aldeídos/química , Aldeídos/farmacologia , Animais , Monoterpenos Ciclopentânicos , Modelos Animais de Doenças , Feminino , Humanos , Azeite de Oliva , Tamanho do Órgão/efeitos dos fármacos , Ovariectomia , Fenóis/química , Fenóis/farmacologia , Polifenóis/química , Polifenóis/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos Lew , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
4.
J Surg Res ; 181(1): e7-e14, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22765996

RESUMO

BACKGROUND: The development of innovative therapies for bone regeneration requires the use of advanced site-specific bone defect small-animal models. The achievement of proper fixation with a murine model is challenging due to the small dimensions of the murine femur. The aim of this investigation was to find the optimal defect size for a murine critical-size bone defect model using external fixation method. METHODS: An external fixation device was attached to the right femur of 30 mice. Femoral bone defects of 1 mm (n = 10), 2 mm (n = 10), and 3 mm (n = 10) were created. Wounds were closed without any additional treatment. To investigate bone healing during the 12-wk observation period, x-ray analysis, histomorphology, immunohistochemistry, and µCT scans were performed. RESULTS: MicroCT analyses after 12 wk showed that 3/8 1-mm defects, 5/8 2-mm defects, and 8/8 3-mm defects remained as nonunions. The defect volumes were 0.36 ± 0.42 mm³ (1-mm group), 1.40 ± 0.88 mm³ (2-mm group), and 2.88 ± 0.28 mm³ (3-mm group; P < 0.001, between all groups). CONCLUSION: Using external fixation, a defect size of 3 mm is necessary to reliably create a persisting femoral bone defect in nude mice.


Assuntos
Fixadores Externos , Fêmur/cirurgia , Animais , Fêmur/lesões , Imuno-Histoquímica , Masculino , Camundongos , Modelos Animais , Engenharia Tecidual , Microtomografia por Raio-X
5.
Eur Cell Mater ; 23: 237-47; discussion 247-8, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22492016

RESUMO

Histological imaging is still considered the gold standard for analysing bone formation around metallic implants. Generally, a limited number of histological sections per sample are used for the approximation of mean values of peri-implant bone formation. In this study we compared statistically the results of bone-implant contact (BIC) and bone-implant volume (BIV) obtained by histological sections, with those obtained by X-ray absorption images from synchrotron radiation micro-computed tomography (SRµCT) using osseointegrated screw-shaped implants from a mini-pig study. Comparing the BIC results of 3-4 histological sections per implant sample with the appropriate 3-4 SRµCT slices showed a non-significant difference of 1.9 % (p = 0.703). The contact area assessed by the whole 3D information from the SRµCT measurement in comparison to the histomorphometric results showed a non-significant difference in BIC of 4.9 % (p = 0.171). The amount of the bone-implant volume in the histological sections and the appropriate SRµCT slices showed a non-significant difference by only 1.4 % (p = 0.736) and also remains non-significant with 2.6 % (p = 0.323) using the volumetric SRµCT information. We conclude that for a clinical evaluation of implant osseointegration with histological imaging at least 3-4 sections per sample are sufficient to represent the BIC or BIV for a sample. Due to the fact that in this study we have found a significant intra-sample variation in BIC of up to ± 35 % the selection of only one or two histological sections per sample may strongly influence the determined BIC.


Assuntos
Transplante Ósseo/métodos , Maxila/cirurgia , Próteses e Implantes , Microtomografia por Raio-X/métodos , Animais , Parafusos Ósseos , Transplante Ósseo/instrumentação , Imageamento Tridimensional , Implantes Experimentais , Maxila/diagnóstico por imagem , Maxila/crescimento & desenvolvimento , Modelos Anatômicos , Osseointegração , Suínos , Porco Miniatura , Síncrotrons , Fatores de Tempo , Titânio
6.
Am J Physiol Endocrinol Metab ; 301(6): E1220-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21900121

RESUMO

Patients with diabetes mellitus have an impaired bone metabolism; however, the underlying mechanisms are poorly understood. Here, we analyzed the impact of type 2 diabetes mellitus on bone physiology and regeneration using Zucker diabetic fatty (ZDF) rats, an established rat model of insulin-resistant type 2 diabetes mellitus. ZDF rats develop diabetes with vascular complications when fed a Western diet. In 21-wk-old diabetic rats, bone mineral density (BMD) was 22.5% (total) and 54.6% (trabecular) lower at the distal femur and 17.2% (total) and 20.4% (trabecular) lower at the lumbar spine, respectively, compared with nondiabetic animals. BMD distribution measured by backscattered electron imaging postmortem was not different between diabetic and nondiabetic rats, but evaluation of histomorphometric indexes revealed lower mineralized bone volume/tissue volume, trabecular thickness, and trabecular number. Osteoblast differentiation of diabetic rats was impaired based on lower alkaline phosphatase activity (-20%) and mineralized matrix formation (-55%). In addition, the expression of the osteoblast-specific genes bone morphogenetic protein-2, RUNX2, osteocalcin, and osteopontin was reduced by 40-80%. Osteoclast biology was not affected based on tartrate-resistant acidic phosphatase staining, pit formation assay, and gene profiling. To validate the implications of these molecular and cellular findings in a clinically relevant model, a subcritical bone defect of 3 mm was created at the left femur after stabilization with a four-hole plate, and bone regeneration was monitored by X-ray and microcomputed tomography analyses over 12 wk. While nondiabetic rats filled the defects by 57%, diabetic rats showed delayed bone regeneration with only 21% defect filling. In conclusion, we identified suppressed osteoblastogenesis as a cause and mechanism for low bone mass and impaired bone regeneration in a rat model of type 2 diabetes mellitus.


Assuntos
Regeneração Óssea/fisiologia , Osso e Ossos/patologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Resistência à Insulina , Osteoblastos/fisiologia , Animais , Densidade Óssea/fisiologia , Calcificação Fisiológica/fisiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Regulação para Baixo , Fêmur/fisiopatologia , Resistência à Insulina/fisiologia , Masculino , Tamanho do Órgão , Osteoblastos/patologia , Ratos , Ratos Zucker , Fatores de Tempo
7.
Materials (Basel) ; 13(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321804

RESUMO

Stenting is a widely used treatment procedure for coronary artery disease around the world. Stents have a complex geometry, which makes the characterization of their corrosion difficult due to the absence of a mathematical model to calculate the entire stent surface area (ESSA). Therefore, corrosion experiments with stents are mostly based on qualitative analysis. Additionally, the quantitative analysis of corrosion is conducted with simpler samples made of stent material instead of stents, in most cases. At present, several methods are available to calculate the stent outer surface area (SOSA), whereas no model exists for the calculation of the ESSA. This paper presents a novel mathematical model for the calculation of the ESSA using the SOSA as one of the main parameters. The ESSA of seven magnesium alloy stents (MeKo Laser Material Processing GmbH, Sarstedt, Germany) were calculated using the developed model. The calculated SOSA and ESSA for all stents are 33.34%(±0.26%) and 111.86 mm (±0.85 mm), respectively. The model is validated by micro-computed tomography (micro-CT), with a difference of 12.34% (±0.46%). The value of corrosion rates calculated using the ESSA computed with the developed model will be 12.34% (±0.46%) less than that of using ESSA obtained by micro-CT.

8.
Mater Sci Eng C Mater Biol Appl ; 97: 12-22, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678897

RESUMO

The main objective of this study was to enhance the biological performance of resorbable polymeric scaffolds for bone tissue engineering. Specifically, we focused on both microstructure and surface modification of the scaffolds to augment adhesion, proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSC). Moreover, a new cell seeding method assuring 90% seeding efficiency on the scaffolds was developed. Poly(l­lactide­co­glycolide) (PLGA) scaffolds with monomodal and bimodal pore distribution were produced by solvent casting/phase separation followed by porogen leaching and modified with artificial extracellular matrices (aECM) consisting of collagen type I and high sulphated hyaluronan (sHya). The application of two porogens resulted in bimodal pore distribution within the PLGA scaffolds as shown by scanning electron microscopy and microcomputer tomography. Two types of pores with diameters 400-600 µm and 2-20 µm were obtained. The scaffolds were successfully coated with a homogenous layer of aECM as shown by Sirius red and toluidine blue staining. In vitro study showed that presence of bimodal pore distribution in combination with collagen/sHya did not significantly influence hMSC proliferation and early osteogenic differentiation compared to scaffolds with monomodal pore distribution. However, it enhanced mineralization as well as the expression of Runt-related transcription factor 2, osteopontin and bone sialoprotein II. As a result PLGA scaffolds with bimodal pore distribution modified with collagen/sHya can be considered as prospective material promoting bone regeneration.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais , Adulto , Fosfatos de Cálcio/metabolismo , Adesão Celular , Proliferação de Células , Colágeno Tipo I/química , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Matriz Extracelular , Humanos , Ácido Hialurônico/química , Sialoproteína de Ligação à Integrina/metabolismo , Masculino , Células-Tronco Mesenquimais/fisiologia , Microscopia Eletrônica de Varredura , Osteogênese , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Engenharia Tecidual/métodos
9.
Biomater Res ; 23: 26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31890268

RESUMO

BACKGROUND: Delayed bone regeneration of fractures in osteoporosis patients or of critical-size bone defects after tumor resection are a major medical and socio-economic challenge. Therefore, the development of more effective and osteoinductive biomaterials is crucial. METHODS: We examined the osteogenic potential of macroporous scaffolds with varying pore sizes after biofunctionalization with a collagen/high-sulfated hyaluronan (sHA3) coating in vitro. The three-dimensional scaffolds were made up from a biodegradable three-armed lactic acid-based macromer (TriLA) by cross-polymerization. Templating with solid lipid particles that melt during fabrication generates a continuous pore network. Human mesenchymal stem cells (hMSC) cultivated on the functionalized scaffolds in vitro were investigated for cell viability, production of alkaline phosphatase (ALP) and bone matrix formation. Statistical analysis was performed using student's t-test or two-way ANOVA. RESULTS: We succeeded in generating scaffolds that feature a significantly higher average pore size and a broader distribution of individual pore sizes (HiPo) by modifying composition and relative amount of lipid particles, macromer concentration and temperature for cross-polymerization during scaffold fabrication. Overall porosity was retained, while the scaffolds showed a 25% decrease in compressive modulus compared to the initial TriLA scaffolds with a lower pore size (LoPo). These HiPo scaffolds were more readily coated as shown by higher amounts of immobilized collagen (+ 44%) and sHA3 (+ 25%) compared to LoPo scaffolds. In vitro, culture of hMSCs on collagen and/or sHA3-coated HiPo scaffolds demonstrated unaltered cell viability. Furthermore, the production of ALP, an early marker of osteogenesis (+ 3-fold), and formation of new bone matrix (+ 2.5-fold) was enhanced by the functionalization with sHA3 of both scaffold types. Nevertheless, effects were more pronounced on HiPo scaffolds about 112%. CONCLUSION: In summary, we showed that the improvement of scaffold pore sizes enhanced the coating efficiency with collagen and sHA3, which had a significant positive effect on bone formation markers, underlining the promise of using this material approach for in vivo studies.

10.
Lab Anim ; 52(5): 479-489, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29426272

RESUMO

Bone protection and metabolism are directly linked to estrogen levels, but exercise is also considered to have bone protective effects. Reduced estrogen levels lead to a variety of disorders, for example, bone loss and reduced movement drive. The objective of this study was to investigate the effects of estrogen on individual voluntary exercise motivation and bone protection. We investigated sham operated, ovariectomized, and ovariectomized with estrogen supplemented Wistar rats (20 weeks old) either with or without access to exercise wheels. We selected an experimental approach where we could monitor the individual exercise of group-housed rats with ad libitum access to a running wheel with the help of a subcutaneous chip. In vivo and ex vivo microcomputed tomography analyses of the tibia were performed at two-week intervals from week 0 to week 6. Furthermore, tibial trabecular structure was evaluated based on histomorphometric analyses. We observed a significant bone protective effect of E2. For exercise performance, a substantially high intra-group variability was observed, especially in the E2 group. We presume that dominant behavior occurs within the group-housed rats resulting in a hierarchical access to the running wheel and a high variability of distance run. Exercise did not prevent ovariectomy-induced bone loss. However, lack of estrogen within the ovariectomized rats led to a drastically reduced activity prevented by estrogen supplementation. Our findings are important for future studies working with group-housed rats and exercise. The reason for the high intra-group variability in exercise needs to be investigated in future studies.


Assuntos
Estrogênios/administração & dosagem , Exercício Físico/psicologia , Motivação , Osteoporose/fisiopatologia , Tíbia/fisiologia , Animais , Exercício Físico/fisiologia , Feminino , Humanos , Modelos Animais , Ovariectomia , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Wistar , Microtomografia por Raio-X
11.
J Orthop Res ; 25(8): 1052-61, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17457829

RESUMO

The in vivo effects of coating titanium implants with organic extracellular matrix molecules were examined in the sheep tibia. Titanium screws (5.0 mm) were coated with type I collagen (Ti/Coll) or type I collagen and chondroitin sulfate (Ti/Coll/CS) by biomimetic fibrillogenesis. Uncoated screws (Ti) and screws coated with hydroxyapatite (Ti/HA) served as control. Six adult female sheep received one screw of each type to stabilize a midshaft tibial fracture with external fixation. Four cylindrical implants of 4-mm outer diameter and 3.3-mm inner diameter with the same coatings were inserted into the tibial head. No pin track infections were seen at the time of implant retrieval 6 weeks after implantation. Extraction torque was greater for Ti/HA (1181 Nmm) and Ti/Coll/CS (1088 Nmm) compared to Ti/Coll (900 Nmm) and Ti (904 Nmm) [N.S.]. Newly formed bone was noted around all coated screws within the medullary cavity. Macrophage and osteoclast activity was significantly reduced around Ti/Coll/CS in both types of implants compared to uncoated controls (p < 0.05). Osteoblast activity was significantly increased around loaded Ti/Coll and Ti/Coll/CS screws compared to uncoated Ti screws (p < 0.05). Microtomographic evaluation (SRmicroCT) revealed no significant differences in new bone formation around the unloaded tibial head implants. Coating of external fixation devices with of type I collagen and chondroitin sulfate appears to have similar effects with respect to stability and bone healing as HA but with less osteoclast activity. These findings were more pronounced under loaded than unloaded conditions in the sheeptibia.


Assuntos
Parafusos Ósseos , Sulfatos de Condroitina/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Colágeno Tipo I/farmacologia , Durapatita/farmacologia , Implantes Experimentais , Titânio , Animais , Fixadores Externos , Fixação de Fratura , Microscopia Eletrônica de Varredura , Radiografia , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/terapia
12.
J Biomed Mater Res B Appl Biomater ; 83(1): 222-31, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17318830

RESUMO

Aim of the present study was to test the hypothesis that the application of components of the extracellular matrix such as glycosaminoglycans used as implant surface coatings in combination with collagen, with and without growth factor, can lead to enhanced ossification and thus improve implant stability compared with collagen coatings alone. Twenty miniature pigs received 120 experimental titanium implants in the mandible. Three types of surface coatings were created: (1) collagen type I (coll), (2) collagen type I/chondroitin sulphate (coll/CS), (3) collagen type I/chondroitin sulphate/BMP-4 (coll/CS/BMP). Periimplant bone formation was assessed within a defined recess along the length axis of the implant. Bone-implant contact (BIC) and bone volume density (BVD) were determined, using both histomorphometry and synchrotron radiation micro computed tomography (SRmicroCT). To measure implant stability, resonance frequency analysis was applied after implantation and 1, 3, 7, and 22 weeks after placement. BIC was highest for coll/CS coated implants, followed by coll, p = 0.082. Histomorphometric BVD did not significantly change for any coating. SRmicroCT analysis showed an increased BVD for collagen coated implants, compared with the other two surface coatings. Implant stability showed a decrease for all coatings up to the third week. At 22 weeks, all coatings showed an increase in stability without reaching their initial level. Highest stability was reached for coll coated implants, p = 0.051. It was concluded that collagen and coll/CS implant coatings have advantageous characteristics for peri-implant bone formation, compared with the further integration of BMP-4.


Assuntos
Osso e Ossos/fisiologia , Materiais Revestidos Biocompatíveis/metabolismo , Matriz Extracelular/metabolismo , Implantes Experimentais , Osseointegração/fisiologia , Titânio/química , Animais , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/química , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/ultraestrutura , Bovinos , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Materiais Revestidos Biocompatíveis/química , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Matriz Extracelular/química , Humanos , Teste de Materiais , Propriedades de Superfície , Suínos
13.
Mater Sci Eng C Mater Biol Appl ; 71: 84-92, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27987780

RESUMO

Bone regeneration in critical size bone defects still represents an important but unsolved clinical problem. Glycosaminoglycans (GAGs) like chondroitin sulfate (CS) or hyaluronan (HA) are important multifunctional components of the extracellular matrix (ECM) in bone and may stimulate bone healing by recruitment of mesenchymal stromal cells and by supporting their differentiation. Sulfation of GAGs affects their biological activity and thus their interactions with growth factors and/or cells involved in the bone healing process. The aim of this pilot study was to evaluate the osteogenic capacity of chemically high-sulfated chondroitin sulfate (sCS3) and hyaluronan (sHA3) with an average degree of sulfation DS≈3 on bone healing. Titanium-coated polyetheretherketone (Ti-PEEK) plates were coated with collagen type I (col), collagen-based artificial ECMs containing CS or HA and compared to col/sCS3 and col/sHA3 coatings bridging a critical size bone defect in rat femur. After 4weeks the gap size of 5.1mm±0.1mm following surgery was significantly reduced to 1.4mm±0.9mm for col/sHA3 and to 0.9mm±0.7mm for col/CS. The highest amount of newly formed bone was detected for col/CS (79%±30%) and col/sHA3 (36%±20%) compared to uncoated plates (13%±3%) or col-coated plates (18%±16%). Enchondral ossification could be confirmed for col/CS, col/HA, and col/sHA3 by positive staining for Alcian blue and collagen type II. These results suggest that an artificial ECM has osteogenic effects and is able to enhance bone healing in critical situations.


Assuntos
Materiais Revestidos Biocompatíveis , Colágeno , Fraturas do Fêmur/terapia , Fêmur/metabolismo , Consolidação da Fratura/efeitos dos fármacos , Glicosaminoglicanos , Osteogênese/efeitos dos fármacos , Animais , Benzofenonas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Colágeno/química , Colágeno/farmacologia , Fraturas do Fêmur/metabolismo , Fraturas do Fêmur/patologia , Fêmur/patologia , Glicosaminoglicanos/química , Glicosaminoglicanos/farmacologia , Cetonas/química , Cetonas/farmacologia , Masculino , Projetos Piloto , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polímeros , Ratos , Ratos Wistar , Titânio/química , Titânio/farmacologia
14.
Phytomedicine ; 34: 50-58, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28899509

RESUMO

BACKGROUND: Hops (Humulus lupulus (L.)) dietary supplements are of interest as herbal remedies to alleviate menopausal symptoms, such as hot flushes, depression and anxiety. So far, the evidence regarding estrogenic and related properties of hops preparations has been considered insufficient for a market authorization for menopausal indications. PURPOSE: The study aims to investigate a chemically standardized hops extract regarding its safety in the uterus, as wells as its efficacy to prevent bone loss in the ovariectomized rat model. STUDY DESIGN/METHODS: Female Wistar rats were ovariectomized and divided into a control group receiving phytoestrogen-free diet, a group treated with E2benzoate (0.93 mg/kg body weight/d) and a group treated with the standardized hops extract (60 mg/kg body weight/d) for 8 weeks. Micro-computed tomography of the tibiae and vertebrae, as wells as histological changes in the uterus and tibia were analyzed. RESULTS: Neither uterotrophic nor proliferative effects were observed in the endometrium in response to the oral 8-week administration of the hops extract. However, site-dependent skeletal effects were observed. The hops extract significantly decreased the number of osteoclasts in the tibial metaphysis and prevented reduction of the trabecular thickness that resulted from estradiol depletion. In contrast, the hops extract did not prevent the ovariectomy-induced micro-architectural changes in the lumbar vertebra. Certain parameters (e.g. thickness and number of trabeculae) were even found to be below the values determined in the ovariectomized control group. CONCLUSION: Taken together, the results provide evidence for the safety of the standardized hops extract and point to a weak bone type-specific, protective effect on bone loss following estradiol depletion.


Assuntos
Humulus/química , Menopausa/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Extratos Vegetais/farmacologia , Útero/efeitos dos fármacos , Animais , Suplementos Nutricionais , Estradiol/deficiência , Feminino , Ovariectomia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Microtomografia por Raio-X
15.
J Biomed Mater Res A ; 104(9): 2126-34, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27060915

RESUMO

The treatment of critical size bone defects represents a challenge. The growth factor bone morphogenetic protein 2 (BMP-2) is clinically established but has potentially adverse effects when used at high doses. The aim of this study was to evaluate if stromal derived factor-1 alpha (SDF-1α) and BMP-2 released from heparinized mineralized collagen type I matrix (MCM) scaffolds have a cumulative effect on bone regeneration. MCM scaffolds were functionalized with heparin, loaded with BMP-2 and/or SDF-1α and implanted into a murine critical size femoral bone defect (control group, low dose BMP-2 group, low dose BMP-2 + SDF-1α group, and high dose BMP-2 group). After 6 weeks, both the low dose BMP-2 + SDF-1α group (5.8 ± 0.6 mm³, p = 0.0479) and the high dose BMP-2 group (6.5 ± 0.7 mm³, p = 0.008) had a significantly increased regenerated bone volume compared to the control group (4.2 ± 0.5 mm³). There was a higher healing score in the low dose BMP-2 + SDF-1α group (median grade 8; Q1-Q3 7-9; p = 0.0357) than in the low dose BMP-2 group (7; Q1-Q3 5-9) histologically. This study showed that release of BMP-2 and SDF-1α from heparinized MCM scaffolds allows for the reduction of the applied BMP-2 concentration since SDF-1α seems to enhance the osteoinductive potential of BMP-2. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2126-2134, 2016.


Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea/efeitos dos fármacos , Quimiocina CXCL12 , Colágeno Tipo I/química , Fêmur , Heparina/química , Alicerces Teciduais/química , Animais , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Quimiocina CXCL12/química , Quimiocina CXCL12/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Fêmur/lesões , Fêmur/metabolismo , Fêmur/patologia , Camundongos , Camundongos Nus
16.
Biomaterials ; 96: 11-23, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27131598

RESUMO

Bone fractures in patients with diabetes mellitus heal poorly and require innovative therapies to support bone regeneration. Here, we assessed whether sulfated hyaluronan included in collagen-based scaffold coatings can improve fracture healing in diabetic rats. Macroporous thermopolymerized lactide-based scaffolds were coated with collagen including non-sulfated or sulfated hyaluronan (HA/sHA3) and inserted into 3 mm femoral defects of non-diabetic and diabetic ZDF rats. After 12 weeks, scaffolds coated with collagen/HA or collagen/sHA3 accelerated bone defect regeneration in diabetic, but not in non-diabetic rats as compared to their non-coated controls. At the tissue level, collagen/sHA3 promoted bone mineralization and decreased the amount of non-mineralized bone matrix. Moreover, collagen/sHA3-coated scaffolds from diabetic rats bound more sclerostin in vivo than the respective controls. Binding assays confirmed a high binding affinity of sHA3 to sclerostin. In vitro, sHA3 induced BMP-2 and lowered the RANKL/OPG expression ratio, regardless of the glucose concentration in osteoblastic cells. Both sHA3 and high glucose concentrations decreased the differentiation of osteoclastic cells. In summary, scaffolds coated with collagen/sHA3 represent a potentially suitable biomaterial to improve bone defect regeneration in diabetic conditions. The underlying mechanism involves improved osteoblast function and binding sclerostin, a potent inhibitor of Wnt signaling and osteoblast function.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Regeneração Óssea/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Ácido Hialurônico/farmacologia , Osteoblastos/metabolismo , Sulfatos/farmacologia , Animais , Remodelação Óssea/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Colágeno/farmacologia , Diabetes Mellitus Tipo 2/patologia , Dioxanos/química , Marcadores Genéticos , Glucose/farmacologia , Glicosaminoglicanos/farmacologia , Masculino , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Polimerização , Ligação Proteica/efeitos dos fármacos , Células RAW 264.7 , Ratos , Temperatura , Alicerces Teciduais/química
17.
Biomaterials ; 26(16): 3009-19, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15603796

RESUMO

In this work the osteoconductive potential of coatings for titanium implants using different extracellular matrix components was evaluated. Cylindrical implants with two defined cavities A and B were coated with collagen type I, type III, or RGD peptide, and placed in the femur of goats together with an uncoated reference state. Bone contact and volume were determined after 5 and 12 weeks implantation, using both histomorphometry and synchrotron radiation micro computed tomography (SR muCT) as the methods complement each other: SR muCT allows for a high precision of bone detection due to the large number of analysed slices per sample, while histology offers a better lateral resolution and the possibility of additionally determining bone contact. Both methods revealed similar tendencies in bone formation for the differently bio-functionalized implants, with the SR muCT data resulting in significant differences. After 5 and 12 weeks, all three coatings showed a significant increase in bone volume over the uncoated reference, with the highest results for the collagen coatings. The coating consisting of just the RGD-sequence to improve cell adhesion showed only a slight improvement compared with the reference material. For uncoated titanium, RGD, and especially collagen type I, the response in cavity A, situated in denser bone, was stronger than in cavity B. Collagen type III, on the other hand, appeared to be the more effective coating in areas of lesser bone density as represented by cavity B. These results indicate that matrix molecules (or combinations thereof) are capable of generating the appropriate signals for the specific microenvironment around implants and can thus accelerate the bone formation process and increase the stability of implants.


Assuntos
Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Substitutos Ósseos , Materiais Revestidos Biocompatíveis/química , Osseointegração , Titânio/farmacologia , Animais , Desenvolvimento Ósseo , Osso e Ossos/metabolismo , Bovinos , Colágeno Tipo I/química , Colágeno Tipo III/química , Feminino , Fêmur , Cabras , Microscopia Eletrônica de Varredura , Oligopeptídeos/química , Próteses e Implantes , Propriedades de Superfície , Síncrotrons , Fatores de Tempo , Titânio/química , Tomografia Computadorizada por Raios X
18.
Acta Biomater ; 26: 82-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26277378

RESUMO

Biocompatible material platforms with adjustable properties and option for chemical modification are warranted for site-specific biomedical applications. To this end, three-armed biodegradable macromers of well-defined chemical characteristics were prepared from trivalent alcohols with different degrees of ethoxylation and different lengths of oligoester domains. A platform of 15 different macromers was established. The macromers were designed to exhibit different hydrophilicities and molecular weights and contained various types of oligoesters such as d,l-lactide, l-lactide and ε-caprolactone. Macromers chemical composition was determined and molecular weights ranged from 900 to 3000 Da. Thermally induced cross-linking of methacrylated macromers was monitored by oscillation rheology. A novel variant of the solid lipid templating technique was established to fabricate macroporous tissue engineering scaffolds from these macromers. Scaffold properties were thoroughly investigated regarding mechanical properties, compositional analysis including methacrylic double bond conversion, microstructure and porosity. Material properties could be controlled by macromer chemistry. By variation of the fabrication procedure and processing parameters scaffold porosity was increased up to 88%. Basic cytocompatibility was assessed including indirect and direct contact methods. The established macromers hold promise for various biomedical purposes. STATEMENT OF SIGNIFICANCE: Specific biomedical applications require tailored biomaterials with defined properties. We established a macromer platform for preparation of tissue engineering scaffolds with adjustable chemical and mechanical characteristics. Macromers were composed of trivalent core alcohols with different degrees of ethoxylation to which biodegradable domains - lactide or ε-caprolactone - were oligomerized before final methacrylation. The solid lipid templating technique was adapted to fabricate macroporous scaffolds with controlled pore structure and porosity from the developed macromers, which can also be processed by solid freeform fabrication techniques. The material platform relies on clinically established chemistries of the biodegradable domains and the macromer concept enables the fabrication of networks in which cross-polymerization kinetics, mechanical properties and surface hydrophobicity is predefined by macromer chemistry. Cytocompatibility was confirmed by indirect and direct cell contact experiments.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/síntese química , Polímeros/síntese química , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Força Compressiva , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Estresse Mecânico , Resistência à Tração
19.
J Bone Miner Res ; 30(3): 471-80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25224731

RESUMO

Prostate cancer is the most frequent malignancy in men, and a major cause of prostate cancer-related death is attributable to bone metastases. WNT5A is known to influence the clinical outcome of various cancer types, including prostate cancer, but the exact mechanisms remain unknown. The goal of this study was to assess the relevance of WNT5A for the development and progression of prostate cancer. WNT5A expression was determined in a cDNA and tissue microarray of primary tumor samples in well-defined cohorts of patients with prostate cancer. Compared with benign prostate tissue, the expression of WNT5A and its receptor Frizzled-5 was higher in prostate cancer, and patients with a WNT5A expression above the median had a higher probability of survival after 10 years. Using different osteotropic human prostate cancer cell lines, the influence of WNT5A overexpression and knock-down on proliferation, migration, and apoptosis was assessed. In vitro, WNT5A overexpression induced prostate cancer cell apoptosis and reduced proliferation and migration, whereas WNT5A knock-down showed opposite effects. In vivo, different xenograft models were used to determine the effects of WNT5A on tumor growth. Local tumor growth and tumor growth in the bone microenvironment was considerably diminished after WNT5A overexpression in PC3 cells. WNT5A exhibits antitumor effects in prostate cancer cells and may be suitable as a prognostic marker and therapeutic target for prostate cancer and associated skeletal metastases.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Wnt/fisiologia , Animais , Linhagem Celular Tumoral , Humanos , Técnicas In Vitro , Masculino , Camundongos , Neoplasias da Próstata/metabolismo , Proteína Wnt-5a
20.
Bone ; 75: 183-91, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25746795

RESUMO

OBJECTIVE: Although osteopenia is frequent in spondyloarthritis (SpA), the underlying cellular mechanisms and association with other symptoms are poorly understood. This study aimed to characterize bone loss during disease progression, determine cellular alterations, and assess the contribution of inflammatory bowel disease (IBD) to bone loss in HLA-B27 transgenic rats. METHODS: Bones of 2-, 6-, and 12-month-old non-transgenic, disease-free HLA-B7 and disease-associated HLA-B27 transgenic rats were examined using peripheral quantitative computed tomography, µCT, and nanoindentation. Cellular characteristics were determined by histomorphometry and ex vivo cultures. The impact of IBD was determined using [21-3 x 283-2]F1 rats, which develop arthritis and spondylitis, but not IBD. RESULTS: HLA-B27 transgenic rats continuously lost bone mass with increasing age and had impaired bone material properties, leading to a 3-fold decrease in bone strength at 12 months of age. Bone turnover was increased in HLA-B27 transgenic rats, as evidenced by a 3-fold increase in bone formation and a 6-fold increase in bone resorption parameters. Enhanced osteoclastic markers were associated with a larger number of precursors in the bone marrow and a stronger osteoclastogenic response to RANKL or TNFα. Further, IBD-free [21-3 x 283-2]F1 rats also displayed decreased total and trabecular bone density. CONCLUSIONS: HLA-B27 transgenic rats lose an increasing amount of bone density and strength with progressing age, which is primarily mediated via increased bone remodeling in favor of bone resorption. Moreover, IBD and bone loss seem to be independent features of SpA in HLA-B27 transgenic rats.


Assuntos
Remodelação Óssea/fisiologia , Osso e Ossos/patologia , Doenças Inflamatórias Intestinais/patologia , Osteoclastos/citologia , Espondiloartropatias/patologia , Animais , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Antígeno HLA-B27/genética , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/genética , Masculino , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , Espondiloartropatias/complicações , Espondiloartropatias/genética , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA