Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Eukaryot Microbiol ; 61(5): 493-508, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24919761

RESUMO

The quantitative importance of ciliates, foraminifers, and amoebae was investigated in marine, brackish, and freshwater sediments from 15 littoral stations. Total protozoan communities were usually dominated by ciliates in term of abundance, while amoebae often dominated in terms of biomass. Applying the biomass-metabolic rate equation, ciliates, amoebae, and foraminifera were estimated to contribute 66% of the total abundance and 33% of the biomass, but up to 55% of the combined metabolic rate to the micro- and meiobenthos in the 15 sediments. Statistical analyses using ciliate data demonstrated: (1) species composition and community structures represented significant differences between freshwater and marine/brackish sediments, and subsequently between temperate and arctic sampling sites; (2) the occurrence of dominant ciliates and their allocation to feeding types indicated that herbivory was the most common feeding strategy in these sediments; (3) multivariate analyses showed all of the tested environmental factors (temperature, salinity, silt/clay, carbon, nitrogen, and chlorophyll a) to be important to varying degrees, but especially the combination of salinity, temperature, and silt/clay. Multiple factor effects or comprehensive influences might be important in regulating the distribution of protozoa in sediments. The importance of protozoa in sediment systems and the potential ecological significance of cysts are discussed.


Assuntos
Amoeba/crescimento & desenvolvimento , Cilióforos/crescimento & desenvolvimento , Foraminíferos/crescimento & desenvolvimento , Água Doce/parasitologia , Sedimentos Geológicos/parasitologia , Amoeba/classificação , Amoeba/genética , Amoeba/isolamento & purificação , Cilióforos/classificação , Cilióforos/genética , Cilióforos/isolamento & purificação , Foraminíferos/classificação , Foraminíferos/genética , Foraminíferos/isolamento & purificação , Dados de Sequência Molecular , Filogenia
2.
PLoS One ; 16(11): e0255619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34843463

RESUMO

Alpine lakes support unique communities which may respond with great sensitivity to climate change. Thus, an understanding of the drivers of the structure of communities inhabiting alpine lakes is important to predict potential changes in the future. To this end, we sampled benthic macroinvertebrate communities and measured environmental variables (water temperature, dissolved oxygen, conductivity, pH, nitrate, turbidity, blue-green algal phycocyanin, chlorophyll-a) as well as structural parameters (habitat type, lake size, maximum depth) in 28 lakes within Hohe Tauern National Park, Austria, between altitudes of 2,000 and 2,700 m a.s.l. The most abundant macroinvertebrate taxa that we found were Chironomidae and Oligochaeta. Individuals of Coleoptera, Diptera, Hemiptera, Plecoptera, Trichoptera, Tricladida, Trombidiformes, Veneroida were found across the lakes and determined to family level. Oligochaeta were not determined further. Generalized linear modeling and permanova were used to identify the impact of measured parameters on macroinvertebrate communities. We found that where rocky habitats dominated the lake littoral, total macroinvertebrate abundance and family richness were lower while the ratio of Ephemeroptera, Plecoptera and Trichoptera (EPT) was higher. Zoo- and phytoplankton densities were measured in a subset of lakes but were not closely associated with macroinvertebrate abundance or family richness. With increasing elevation, macroinvertebrate abundances in small and medium-sized lakes increased while they decreased in large lakes, with a clear shift in community composition (based on families). Our results show that habitat parameters (lake size, habitat type) have a major influence on benthic macroinvertebrate community structure whereas elevation itself did not show any significant effects on communities. However, even habitat parameters are likely to change under climate change scenarios (e.g. via increased erosion) and this may affect alpine lake macroinvertebrates.


Assuntos
Biodiversidade , Ecossistema , Invertebrados , Lagos , Animais , Áustria , Mudança Climática , Monitoramento Ambiental
3.
Oecologia ; 126(1): 114-124, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28547430

RESUMO

For unicellular organisms, a lack of effects of local species richness on ecosystem function has been proposed due to their locally high species richness and their ubiquitous distribution. High dispersal ability and high individual numbers may enable unicellular taxa to occur everywhere. Using our own and published data sets on uni- and multicellular organisms, we conducted thorough statistical analyses to test whether (1) unicellular taxa show higher relative local species richness compared to multicellular taxa, (2) unicellular taxa show lower slopes of the species:area relationships and species:individuals relationships, and (3) the species composition of unicellular taxa is less influenced by geographic distance compared to multicellular taxa. We found higher local species richness compared to the global species pool for unicellular organisms than for metazoan taxa. The difference was significant if global species richness was conservatively estimated but not if extrapolated, and therefore higher richness estimates were used. Both microalgae and protozoans showed lower slopes between species richness and sample size (area or individuals) compared to macrozoobenthos, also indicating higher local species richness for unicellular taxa. The similarity of species composition of both benthic diatoms and ciliates decreased with increasing geographic distance. This indicated restricted dispersal ability of protists and the absence of ubiquity. However, a steeper slope between similarity and distance was found for polychaetes and corals, suggesting a stronger effect of distance on the dispersal of metazoans compared to unicellular taxa. In conclusion, we found partly different species richness patterns among uni- and multicellular eukaryotes, but no strict ubiquity of unicellular taxa. Therefore, the effect of local unicellular species richness on ecosystem function has to be reanalyzed. Macroecological patterns suggested for multicellular organisms may differ in unicellular communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA